DOI QR코드

DOI QR Code

A Study on the Effect of CNT on Crystallization Kinetics and Hydrolytic Degradation of PKA/CNT Composite

PLA/CNT 복합재료의 결정화 특성 및 가수분해에 미치는 CNT 영향에 대한 연구

  • Li, Mei-Xian (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Sung-Ha (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Si-Hwan (Central Research Center, Hyundai Motor Co.) ;
  • Park, Jong-Kyoo (Agency for Defense Development) ;
  • Lee, Woo-Il (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Published : 2011.08.31

Abstract

As environmental pollution getting worse, biodegradable materials have been drawn more attention than ever. In this study, polylactic acid (PLA)/carbon nanotubc (CNT) nanocomposites were manufactured via extrusion molding and injection molding, In order to change the crystallinity, annealing treatment was done for different time span, Crystallization kinetics of PLA was analyzed by differential scanning calorimeter (DSC), and it was confirmed that a proper amount of CNT can increase the crystallization rate of PLA. In addition, the presence of CNT significantly accelerates the hydrolytic degradation rate of PLA, however, it decreases with the increase of crystallinity. The reason is that degradation may occur in the PLA/CNT interface easily, and the molecular structure of the composite becomes dense with the increase of crystallinity.

환경오염이 나날이 증가함에 따라 바이오 재료에 대한 관심이 커지고 있다. 본 연구에서는 생분해성 열가소성 수지인 폴리 유산 (PLA)을 기지재료로 하고 탄소나노튜브 (CNT)를 나노 filler로 사용하여 압출 및 사출공정을 통하여 복합재료를 제작하였다. 시편의 결정화도를 변화시키기 위하여 어닐링 시간에 변화를 주어 처리하였다. PLA의 결정화 특성은 시차주사열량계 (DSC)를 통하여 평가하였고, 적당한 양의 CNT가 PLA의 결정화 속도를 향상시킨 것을 확인할 수 있었다. 그 외에 PLA/CNT 복합재료의 가수분해 속도는 순수 PLA에 비하여 빠르지만 PLA/CNT 복합재료의 결정화도가 증가함에 따라 가수분해 속도가 늦어지는 것을 확인할 수 있었다. 이것은 가수분해가 PLA/CNT의 계면에서 쉽게 일어나고 결정화도가 높아짐에 따라 분자 구조가 치밀해지기 때문인 것으로 판단 된다.

Keywords

References

  1. D. Garlotta, "Literature Review of Polylactic Acid", Journal of Polymers and the Environment, Vol. 9, 2001, pp. 63-84. https://doi.org/10.1023/A:1020200822435
  2. M. Day, A. Victoria Nawaaby, X. Liao, "A DSC Study of the Crystallization Behavior of Polylactic Acid and its Nanocomposites", Journal of Thermal Analysis and Calorimetry, Vol. 86, 2006, pp. 623-629. https://doi.org/10.1007/s10973-006-7717-9
  3. R. Liao, B. Yang, W. Yu, C. X. Zhou, "Isothermal Cold Crystallization Kinetics of Polylactide/Nucleating Agents", Journal of Applied Polymer Science, Vol. 104, 2007, pp. 310-317. https://doi.org/10.1002/app.25733
  4. Z. B. Qiu, H. Pan, "Preparation, crystallization and hydrolytic degradation of biodegradable polylactide/polyhedral oligomeric silsesquioxanes nanocomposite", Composites Science and Technology, Vol. 70, 2010, pp. 1089-1094. https://doi.org/10.1016/j.compscitech.2009.11.001
  5. H. S. Kim, B. Y. Park, J. H. Choi, J. S. Yoon, "Mechanical Properties and Thermal Stability of Polylactide/Calcium Cabonate Composites", Journal of Applied Polymer Science, Vol. 109, 2008, pp. 3087-3092. https://doi.org/10.1002/app.28229
  6. W. Zhuang, J. Liu, J. H. Zhang, "Preparation, Characterization, and Properties of 'TiO2/PLA Nanocomposites by In Situ Polymerization", Polymer Composites, Vol. 30, 2009, pp.1074-1080. https://doi.org/10.1002/pc.20658
  7. A. P. Zhu, H. X. Diao, Q. P. Rong, A. Y. Cai, "Preparation and Properties of Polylactide-Silica Nanocomposites", Journal of Applied Polymer Science, Vol. 116, 2010, pp. 2866-2873.
  8. M. Murariu, A. L. Dechief, L. Bonnaud, "The production and properties of polylactide composites filled with expanded graphite", Polymer Degradation and Stability, Vol. 95, 2010, pp. 889-900. https://doi.org/10.1016/j.polymdegradstab.2009.12.019
  9. R. Kumar, M. K. Yakubu, R. D. Anandjiwala, "Biodegradation of flax fiber reinforced polylactic acid", Express Polymer Letters, Vol. 4, 2010, pp. 423-430. https://doi.org/10.3144/expresspolymlett.2010.53
  10. R. H. Hu, M. Y. Sun, J. K. Lim, "Moisture absorption, tensile strength and microstructure evolution of short jute fiber/ polylactide composite in hygrothermal environment", Materials and Design, Vol. 31, 2010, pp. 3167-3173. https://doi.org/10.1016/j.matdes.2010.02.030