DOI QR코드

DOI QR Code

The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell's function

  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kim, Sung-Eun (Department of Orthopedic Surgery & Rare Diseases Institute, Korea University Medical Center, Guro Hospital) ;
  • Song, Se-Kyung (Department of Prosthodontics, Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Shim, Ji-Suk (Department of Prosthodontics, Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Lee, Jeong-Yo (Department of Prosthodontics, Institute for Clinical Dental Research, Korea University Guro Hospital) ;
  • Shin, Sang-Wan (Department of Prosthodontics, Institute for Clinical Dental Research, Korea University Guro Hospital)
  • Received : 2011.07.12
  • Accepted : 2011.08.09
  • Published : 2011.09.30

Abstract

PURPOSE. This study was performed to investigate the ability of recombinant human-bone morphogenic protein-2 immobilized on a heparin-grafted bone substrate to enhance the osteoblastic functions. MATERIALS AND METHODS. The Bio-$Oss^{(R)}$, not coated with any material, was used as a control group. In rhBMP-2-Bio-$Oss^{(R)}$ group, rhBMP-2 was coated with Bio-$Oss^{(R)}$ using only deep and dry methods (50 ng/mL, 24 h). In heparinized rhBMP-2-Bio-$Oss^{(R)}$ group, dopamine was anchored to the surface of Bio-$Oss^{(R)}$, and coated with heparin. rhBMP-2 was immobilized onto the heparinized- Bio-$Oss^{(R)}$ surface. The release kinetics of the rhBMP-2-Bio-$Oss^{(R)}$ and heparinized rhBMP-2-Bio-$Oss^{(R)}$ were analyzed using an enzyme-linked immunosorbent assay. The biological activities of the MG63 cells on the three groups were investigated via cytotoxicity assay, cell proliferation assay, alkaline phosphatase (ALP) measurement, and calcium deposition determination. Statistical comparisons were carried out by one-way ANOVA test. Differences were considered statistically significant at $^*$P<.05 and $^{**}$P<.001. RESULTS. The heparinized rhBMP-2-Bio-$Oss^{(R)}$ showed more sustained release compared to the rhBMP-2-Bio-$Oss^{(R)}$ over an extended time. In the measurement of the ALP activity, the heparinized group showed a significantly higher ALP activity when compared with the non-heparinized groups (P<.05). The MG63 cells cultivated in the group with rhBMP-2 showed increased calcium deposition, and the MG63 cells from the heparinized group increased more than those that were cultivated in the non-heparinized groups. CONCLUSION. Heparin increased the rhBMP-2 release amount and made sustained release possible, and heparinized Bio-$Oss^{(R)}$ with rhBMP-2 successfully improved the osteoblastic functions.

Keywords

References

  1. Amerio P, Vianale G, Reale M, Muraro R, Tulli A, Piattelli A. The effect of deproteinized bovine bone on osteoblast growth factors and proinflammatory cytokine production. Clin Oral Implants Res 2010;21:650-5. https://doi.org/10.1111/j.1600-0501.2009.01881.x
  2. Del Fabbro M, Rosano G, Taschieri S. Implant survival rates after maxillary sinus augmentation. Eur J Oral Sci 2008;116:497-506. https://doi.org/10.1111/j.1600-0722.2008.00571.x
  3. Mangano C, Scarano A, Iezzi G, Orsini G, Perrotti V, Mangano F, Montini S, Piccirilli M, Piattelli A. Maxillary sinus augmentation using an engineered porous hydroxyapatite: a clinical, histological, and transmission electron microscopy study in man. J Oral Implantol 2006;32:122-31. https://doi.org/10.1563/796.1
  4. Esposito M, Grusovin MG, Kwan S, Worthington HV, Coulthard P. Interventions for replacing missing teeth: bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 2008;3:CD003607.
  5. Fulmer NL, Bussard GM, Gampper TJ, Edlich RF. Anorganic bovine bone and analogs of bone mineral as implants for craniofacial surgery: a literature review. J Long Term Eff Med Implants 1998;8:69-78.
  6. Kubler A, Neugebauer J, Oh JH, Scheer M, Zo¨ller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent 2004;13:171-9. https://doi.org/10.1097/01.ID.0000127522.14067.11
  7. Turhani D, Weissenbo¨ck M, Watzinger E, Yerit K, Cvikl B, Ewers R, Thurnher D. In vitro study of adherent mandibular osteoblast- like cells on carrier materials. Int J Oral Maxillofac Surg 2005;34:543-50. https://doi.org/10.1016/j.ijom.2004.10.023
  8. Reddi AH. Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. J Cell Biochem 1994;56:192-5. https://doi.org/10.1002/jcb.240560213
  9. Reddi AH. Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells. Maureen Owen revisited. Clin Orthop Relat Res 1995;313:115-9.
  10. Duneas N, Crooks J, Ripamonti U. Transforming growth factorbeta 1: induction of bone morphogenetic protein genes expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein-1 (BMP-7). Growth Factors 1998;15:259-77. https://doi.org/10.3109/08977199809017482
  11. Hall J, Sorensen RG, Wozney JM, Wikesjo UM. Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model. J Clin Periodontol 2007;34:444-51. https://doi.org/10.1111/j.1600-051X.2007.01064.x
  12. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233-41. https://doi.org/10.1080/08977190412331279890
  13. Bessa PC, Balmayor ER, Azevedo HS, Nu¨rnberger S, Casal M, van Griensven M, Reis RL, Redl H. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen Med 2010; 4:349-55. https://doi.org/10.1002/term.245
  14. Sykaras N, Iacopino AM, Triplett RG, Marker VA. Effect of recombinant human bone morphogenetic protein-2 on the osseointegration of dental implants: a biomechanics study. Clin Oral Investig 2004;8:196-205. https://doi.org/10.1007/s00784-004-0270-7
  15. Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D'Augusta DA, Beckwith K, Morris EA. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 2000;82: 151-60. https://doi.org/10.1302/0301-620X.82B1.10733
  16. Bax BE, Wozney JM, Ashhurst DE. Bone morphogenetic protein- 2 increases the rate of callus formation after fracture of the rabbit tibia. Calcif Tissue Int 1999;65:83-9. https://doi.org/10.1007/s002239900662
  17. Sheehan JP, Kallmes DF, Sheehan JM, Jane JA Jr, Fergus AH, diPierro CG, Simmons NE, Makel DD, Helm GA. Molecular methods of enhancing lumbar spine fusion. Neurosurgery 1996; 39:548-54.
  18. King GN, King N, Cruchley AT, Wozney JM, Hughes FJ. Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. J Dent Res 1997;76:1460-70. https://doi.org/10.1177/00220345970760080801
  19. Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1997;79:1452-63. https://doi.org/10.2106/00004623-199710000-00002
  20. Zellin G, Linde A. Importance of delivery systems for growthstimulatory factors in combination with osteopromotive membranes. An experimental study using rhBMP-2 in rat mandibular defects. J Biomed Mater Res 1997;35:181-90. https://doi.org/10.1002/(SICI)1097-4636(199705)35:2<181::AID-JBM6>3.0.CO;2-J
  21. Kim J, Park Y, Tae G, Lee KB, Hwang CM, Hwang SJ, Kim IS, Noh I, Sun K. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. J Biomed Mater Res A 2009; 88:967-75.
  22. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K. Bone regeneration using hyaluronic acidbased hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 2007;28:1830-7. https://doi.org/10.1016/j.biomaterials.2006.11.050
  23. Lee TC, Ho JT, Hung KS, Chen WF, Chung YH, Yang YL. Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment. Neurosurgery 2006;58:373-80; discussion 373-80. https://doi.org/10.1227/01.NEU.0000199725.03186.F6
  24. Jeon O, Song SJ, Yang HS, Bhang SH, Kang SW, Sung MA, Lee JH, Kim BS. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun 2008;369:774-80. https://doi.org/10.1016/j.bbrc.2008.02.099
  25. Sasisekharan R, Ernst S, Venkataraman G. On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans. Angiogenesis 1997;1:45-54. https://doi.org/10.1023/A:1018318914258
  26. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 2003;65:489-97.
  27. Ishibe T, Goto T, Kodama T, Miyazaki T, Kobayashi S, Takahashi T. Bone formation on apatite-coated titanium with incorporated BMP-2/heparin in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:867-75. https://doi.org/10.1016/j.tripleo.2009.06.039
  28. von Walter M, Herren C, Gensior TJ, Steffens GC, Hermanns- Sachweh B, Jahnen-Dechent W, Ru¨ger M, Erli HJ. Biomimetic modification of the TiO(2)/glass composite Ecopore with heparinized collagen and the osteoinductive factor BMP-2. Acta Biomater 2008;4:997-1004. https://doi.org/10.1016/j.actbio.2008.01.020
  29. Kodama T, Goto T, Miyazaki T, Takahashi T. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Int J Oral Maxillofac Implants 2008;23:1013-9.
  30. Ishibe T, Goto T, Kodama T, Miyazaki T, Kobayashi S, Takahashi T. Bone formation on apatite-coated titanium with incorporated BMP-2/heparin in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:867-75. https://doi.org/10.1016/j.tripleo.2009.06.039
  31. Kim SE, Song SH, Yun YP, Choi BJ, Kwon IK, Bae MS, Moon HJ, Kwon YD. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials 2011;32:366-73. https://doi.org/10.1016/j.biomaterials.2010.09.008
  32. Tadjoedin ES, de Lange GL, Bronckers AL, Lyaruu DM, Burger EH. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J Clin Periodontol 2003; 30:261-70. https://doi.org/10.1034/j.1600-051X.2003.01099.x
  33. Bessho K, Konishi Y, Kaihara S, Fujimura K, Okubo Y, Iizuka T. Bone induction by Escherichia coli -derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2000;38:645-9. https://doi.org/10.1054/bjom.2000.0533
  34. Tokuhara Y, Wakitani S, Imai Y, Kawaguchi A, Fukunaga K, Kim M, Kadoya Y, Takaoka K. Repair of experimentally induced large osteochondral defects in rabbit knee with various concentrations of Escherichia coli-derived recombinant human bone morphogenetic protein-2. Int Orthop 2010;34:761-7. https://doi.org/10.1007/s00264-009-0818-x
  35. Lee JH, Kim CS, Choi KH, Jung UW, Yun JH, Choi SH, Cho KS. The induction of bone formation in rat calvarial defects and subcutaneous tissues by recombinant human BMP-2, produced in Escherichia coli. Biomaterials 2010;31:3512-9. https://doi.org/10.1016/j.biomaterials.2010.01.075
  36. Ho YC, Mi FL, Sung HW, Kuo PL. Heparin-functionalized chitosan- alginate scaffolds for controlled release of growth factor. Int J Pharm 2009;376:69-75. https://doi.org/10.1016/j.ijpharm.2009.04.048
  37. Lin H, Zhao Y, Sun W, Chen B, Zhang J, Zhao W, Xiao Z, Dai J. The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2. Biomaterials 2008;29:1189-97. https://doi.org/10.1016/j.biomaterials.2007.11.032
  38. Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP. Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 2006;43:17-24. https://doi.org/10.1042/BA20050075
  39. Turksen K, Bhargava U, Moe HK, Aubin JE. Isolation of monoclonal antibodies recognizing rat bone-associated molecules in vitro and in vivo. J Histochem Cytochem 1992;40:1339-52. https://doi.org/10.1177/40.9.1506671
  40. van den Beucken JJ, Walboomers XF, Boerman OC, Vos MR, Sommerdijk NA, Hayakawa T, Fukushima T, Okahata Y, Nolte RJ, Jansen JA. Functionalization of multilayered DNAcoatings with bone morphogenetic protein 2. J Control Release 2006;113:63-72. https://doi.org/10.1016/j.jconrel.2006.03.016
  41. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 2002;99:12600-5. https://doi.org/10.1073/pnas.202296599

Cited by

  1. Osteopromotive activity of a novel pyrazole carboxamide derivative vol.5, pp.2, 2013, https://doi.org/10.4155/fmc.12.209
  2. Effect of immobilization of the recombinant human bone morphogenetic protein 2 (rhBMP-2) on anodized implants coated with heparin for improving alveolar ridge augmentation in beagle dogs: Radiographic observations vol.51, pp.4, 2013, https://doi.org/10.4047/jkap.2013.51.4.307
  3. Development and characterization of heparin immobilized bacterial cellulose(BC) for bone tissue engineering using gamma-irradiation vol.11, pp.S2, 2014, https://doi.org/10.1007/s13770-014-0424-x
  4. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration vol.16, pp.7, 2015, https://doi.org/10.3390/ijms160716034
  5. Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration vol.9, pp.11, 2016, https://doi.org/10.3390/ma9110954
  6. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds vol.9, pp.2, 2011, https://doi.org/10.1088/1748-6041/9/2/025008
  7. Improving Osteogenesis Activity on BMP-2-Immobilized PCL Fibers Modified by the γ -Ray Irradiation Technique vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/302820
  8. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/459393
  9. Hydrolyzed tilapia fish collagen induces osteogenic differentiation of human periodontal ligament cells vol.10, pp.6, 2011, https://doi.org/10.1088/1748-6041/10/6/065020
  10. Chitosan-Human Bone Composite Granulates for Guided Bone Regeneration vol.22, pp.5, 2011, https://doi.org/10.3390/ijms22052324