DOI QR코드

DOI QR Code

Structure and Oil Sorption Capacity of Kapok Fiber [Ceibapentandra (L.) Gaertn.]

케이폭의 구조 및 흡유 특성

  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Jung-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Son, Su-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Dong-Jin (Korea Institute of Ceramic Engineering & Technology) ;
  • Jung, Young-Jin (Department of Biomaterial Science, Pusan National University) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 이정희 (부산대학교 유기소재시스템공학과) ;
  • 손수진 (부산대학교 유기소재시스템공학과) ;
  • 이동진 (한국세라믹기술원) ;
  • 정영진 (부산대학교 바이오소재과학과) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2011.07.05
  • Accepted : 2011.08.31
  • Published : 2011.09.27

Abstract

The structure of kapok fiber was characterized using FTIR and $^{13}C$-NMR spectrometers, elemental analyzer, x-ray diffractometer, SEM and IMT I-Solution ver 7.5. The kapok has a hollow tube shape and is composed of cellulose I with crystallinity of 47.95%. To develop novel oil-sorbent materials necessary to avoid the environmental pollution by spilled oil, the oil absorption capacity of various fibers such as kapok, polypropylene(PP), acryl, bamboo, cotton, rayon and wool fibers is compared in this study. The kapok fiber had the highest oil absorption capacity among the fibers and its water absorption capacity was the least. The kapok fiber selectively absorbed significant amounts of oils (43g/g of fiber for kerosene, 65g/g of fiber for soybean oil), which might be due to higher hydrophobicity of the kapok fiber, suggesting that kapok fiber may have high potential as excellent oil-absorbent materials.

Keywords

References

  1. A. W. Maki, The Exxon Valdez Oil Spill: Initial Environmental Impact Assesment, Environ. Sci. Technol., 25, 24-29(1991). https://doi.org/10.1021/es00013a001
  2. H. T. T. Duong and R. P. Burford, Effect of Foam Density, Oil Viscosity and Temperature on Oil Sorption Behavior of Polyurethane, J. Appl. Polym. Sci., 99, 360-367(2006). https://doi.org/10.1002/app.22426
  3. H. S. Shin, J. H. Yoo, and L. Jin, A Study on Oil Absorption Rate and Oil Absorbency of Melt-blown Nonwoven, Textile Coloration and Finishing, 22(3), 257-263(2010). https://doi.org/10.5764/TCF.2010.22.3.257
  4. M. O. Adebazo, R. L. Frost, J. T. Kloprogge, O. Carmody, and S. Kokot, Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties, J. Porous Materials, 10, 159-170(2003). https://doi.org/10.1023/A:1027484117065
  5. H. Xiao, W. Yu, and M. Shi, The Fine Structure of Kapok Fiber, Text. Res. J., 80, 159-165(2010). https://doi.org/10.1177/0040517508095594
  6. O. K. Sunmou and D. Abdullahhi, Characterization of Fibers from the Plant Ceiba Pentandra, J. Text. Inst., 2, 273-274(1981).
  7. Y. Kobayashi, R. Matsuo, and M. Nishiyama, Japanese Pat. 52,138,081(1977).
  8. K. Hori, M. E. Flavier, S. Kuga, T. B. T. Lam, and K. Iiyama, Excellent Oil Absorbent Kapok[Ceiba pentandra (L.) Gaertn.] Fiber: Fiber Structure, Chemical Characteristics, and Application, J. Wood Sci., 46, 401-404(2000). https://doi.org/10.1007/BF00776404
  9. C. Q. W. Lin, Structure and Property Contrast of Kapok Fibre and Cotton Fibre, Cotton Textile Technology, 11, 12(2009).
  10. L. Y. Mwaikambo and M. P. Ansell, Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization, J. Appl. Polym. Sci., 84, 2222-2234(2002). https://doi.org/10.1002/app.10460
  11. T. T. Lim and X. Huang, Evaluation of Kapok (Ceiba pentandra (L.) Gaertn.) as a Natural Hollow Hydrophobic-Oleophilic Fibrous Sorbent for Oil Spill Cleanup, Chemosphere, 66, 955-963(2007). https://doi.org/10.1016/j.chemosphere.2006.05.062
  12. Notification No. 2008-4 of Korea Coast Guard, Korea.
  13. M. A. Abdullah, A. U. Rahmah, and Z. Man, Physicochemical and Sorption Characteristics of Malysian Ceiba pentandra (L.) Gaertn. as a Natural Oil Sorbent, J. Hazardous Materials, 177, 683-691(2010). https://doi.org/10.1016/j.jhazmat.2009.12.085
  14. V. Tserki, N. E. Zaferropous, F. Simon, and C. Panayiotou, A Stduy on the Effect of Acetylation and Propioylation Surface Treatments on Natural Fibers, Compos. A: Appl. Sci. Manuf., 36, 1110-1118(2005). https://doi.org/10.1016/j.compositesa.2005.01.004
  15. P. H. Kang, J. P. Jeun, B. Y. Chung, J. S. Kim, and Y. C. Nho, Preparation and Characterization of Glycidyl Methacrylate (GMA) Grafted Kapok Fiber by Using Radiation Induced-grafting Technique, L. Ind. Eng. Chem., 13, 956-958(2007).
  16. M. O. Adebajo and R. L. Frost, Infra-red and 13-C MAS Nuclear Magnetic Resonance Spectroscopic Study of Acethylation of Cotton, Spectrochim. Acta A, 60, 449-453(2004). https://doi.org/10.1016/S1386-1425(03)00249-X
  17. B. R. Li, "Encyclopedia Textile", Encyclopedia of China Publishing House, Beijing, China, p.195, 1984.
  18. R. D. Gilbert, "Cellulosic Polymers, Blends and Composites", Hanser Publishers, Munich Vienna New York, pp.4-5, 1995.

Cited by

  1. Effect of blend ratio of PP/kapok blend nonwoven fabrics on oil sorption capacity vol.34, pp.24, 2013, https://doi.org/10.1080/09593330.2013.808242
  2. Comparison of Oil Sorption Capacity and Biodegradability of PP, PP/kapok(10/90wt%) Blend and Commercial(T2COM) Oil Sorbent Pads vol.26, pp.3, 2014, https://doi.org/10.5764/TCF.2014.26.3.151
  3. Changes in Properties of Tropical Kapok Fibers by the Pretreatments vol.45, pp.1, 2013, https://doi.org/10.7584/ktappi.2013.45.1.052
  4. Identification of Hydrophobic Components in Cambodian Kapok Fiber vol.45, pp.5, 2013, https://doi.org/10.7584/ktappi.2013.45.5.030
  5. Oil Absorptive Properties of Polypropylene Knit Fabric Treated with Oleophilic Acrylic Resin vol.17, pp.2, 2016, https://doi.org/10.5762/KAIS.2016.17.2.528