DOI QR코드

DOI QR Code

Effect of Red Bean Protein and Microbial Transglutaminase on Gelling Properties of Myofibrillar Protein

적소두단백질(Red Bean Protein)과 Transglutaminase를 첨가한 돈육 근원섬유 단백질의 물성 증진 효과

  • Jang, Ho-Sik (Department of Animal Science and Functional Foods Research Institute, Chonnam National University) ;
  • Chin, Koo-Bok (Department of Animal Science and Functional Foods Research Institute, Chonnam National University)
  • 장호식 (전남대학교 동물자원학부 및 기능성 식품 연구센터) ;
  • 진구복 (전남대학교 동물자원학부 및 기능성 식품 연구센터)
  • Received : 2011.08.05
  • Accepted : 2011.10.14
  • Published : 2011.10.31

Abstract

The effects of soy protein isolate (SPI) and red bean protein isolate (RBPI) on gelling properties of pork myofibrillar protein (MP) in the presence of microbial transglutaminase (MTG) were studied at 0.45 M NaCl. MP paste was incubated with MTG (0.1%) at various levels (0.1, 0.3, 0.5, and 1%) of SPI and RBPI before incubating at $4^{\circ}C$ for 4 h. The rheological property results showed that MP gel shear stress increased with increasing RBPI concentration. Cooking yield (CY) of the MP gel increased with increasing RBPI and SPI, whereas gel strength (GS) was not affected by adding RBPI or SPI. Thus, effects of incubation time (0, 4, 8, 10, and 12 h) were measured at 0.1% SPI and RBPI. GS values of the MP gel at 10 and 12 h were similar and were higher than those of the others. CY values were highest when RBPI (0.1%) was added, regardless of incubation time. The protein patterns indicated that incubating the MP with MTG for 10 h resulted in protein crosslinking between MP and RBPI or SPI. Based on these results, RBPI and SPI could be used as an ingredient to increase textural properties and cooking yield of meat protein gel.

본 연구는 TGase 첨가에 따른 근원섬유 단백질과 비육류 단백질인 적소두단백질 또는 대두단백질간의 상호작용을 비교 평가하기 위해 수행되었다. 실험 1에서는 비육류 단백질 함량에 따른 물성 변화를 평가하였으며 실험 2에서는 TGase 반응시간에 따른 최적 조건을 평가하였다. 가열수율은 비육류 단백질을 첨가한 처리구에서 유의적으로 증가하였으며 특히 적소두단백질 1%을 첨가하였을 때 가장 높은 가열수율을 나타내었다(p<0.05). 반면에 겔 강도 및 점성도는 근원섬유 단백질 단독 처리구와 비육류 단백질을 첨가한 처리구와 비교하였을 때 유의적으로 차이가 나타나지 않았다(p>0.05). 또한 전기영동 결과는 가열 전 TGase 첨가 후 4시간 반응시켰을 때는 모든 처리구에서 변화를 보이지 않았지만(실험1), TGase 첨가 후 10시간 반응시킨 모든 처리구에서는 biopolymer 밴드가 나타났다(실험2). 또한 TGase 반응시간에 따른 겔 강도는 10시간째에 유의적으로 증가하였다(p<0.05). 하지만 10시간의 반응시간은 배양시간이 너무 길어 산업적으로 이용하기 부적합 하기 때문에 TGase함량을 0.5%로 증가시켜 효소와 단백질간의 최적 반응시간을 평가하고 비육류 단백질과의 상호작용을 통한 물성을 증진시키는 연구가 앞으로 필요할 것으로 사료된다.

Keywords

References

  1. Aktas, N. and Kilic, B. (2005) Effect of microbial transglutaminase on thermal and electrophoretic properties of ground beef. Swiss Soci. Food Sci. Technol. 38, 815-819.
  2. Alibhai, Z., Mondor, M., Moresoli, C., Ippersiel, D., and Lamarche, F. (2006) Production of soy protein concentrates/isolates: traditional and membrane technologies. Desalination. 191, 351-358. https://doi.org/10.1016/j.desal.2005.05.026
  3. Chau, C. F. and Cheung, P. C. K. (1998) Functional properties of flours prepared from three Chinese indigenous legume seeds. Food Chem. 61, 429-433. https://doi.org/10.1016/S0308-8146(97)00091-5
  4. Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009) Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation. Meat Sci. 81, 565-572. https://doi.org/10.1016/j.meatsci.2008.10.012
  5. Chin, K. B. (2002) Manufacture and evaluation of low-fat meat products (A review). Korean J. Food Sci. Ani. Resour. 22, 363-372.
  6. Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009) Effect of soy protein substitution for sodium caseinate on the transglutaminate-induced cold and thermal gelation of myofibrillar protein. Food Res. Int. 45, 941-948.
  7. Doerscher, D. R., Briggs, J. L., and Lonergan, S. M. (2003) Effects of pork collagen on thermal and viscoelastic properties of purified porcine myofibrillar protein gels. Meat Sci. 66, 181-188.
  8. Feng, J. and Xiong, Y. L. (2002) Interaction of myofibrillar and preheated soy protein. Food Chem. Toxicol. 67, 2851-2856.
  9. Gornall, A. G., Bardawill, C. J., and David, M. M. (1948) Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751-756.
  10. Haga, S. and Ohashi, T. (1984) Heat-induced gelation of a mixture of myosin B and soybean protein. Agric. Biol. Chem. 48, 1001-1007. https://doi.org/10.1271/bbb1961.48.1001
  11. Hong, G. P. and Chin, K. B. (2010) Effects of microbial transglutaminase and sodium alginate on cold-set gelation of porcine myofibrillar protein with various salt levels. Food Hydrocol. 24, 444-451. https://doi.org/10.1016/j.foodhyd.2009.11.011
  12. Hua, Y., Cui, S. W., Wang, Q., Mine, Y., and Poysa, V. (2005) Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours. Food Res. Int. 38, 377-385. https://doi.org/10.1016/j.foodres.2004.10.006
  13. Hwang, C. S., Jeong, D. Y., Kim, Y. S., Na, J. M., and Shin, D. H. (2005) Effects of enzyme treatment on physicochemical characteristics of small red bean percolate. Korean J. Food Sci. Technol. 37, 189-193.
  14. Ionescu, A., Aprodu, I., Daraba, A., and Porneala, L. (2008) The effets of transglutaminase on the functional properties of the myofibrillar protein concentrate obtained from beef heart. Meat Sci. 79, 278-284. https://doi.org/10.1016/j.meatsci.2007.09.011
  15. Kamazawa, Y., Sano, K., Seguro, K., Yasueda, H., Nio, N., and Motoki, M. (1997) Purification and characterization of transglutaminase from Japanese oyster (Crassostrea gigas). J. Agric. Food Chem. 45, 604-610. https://doi.org/10.1021/jf9604596
  16. Kilic, B. (2003) Effect of microbial transglutaminase and sodium caseinate on quality of chicken doner kebab. Meat Sci. 63, 417-421. https://doi.org/10.1016/S0309-1740(02)00102-X
  17. Kim, H. J., Sohn, K. H., and Park, H. K. (1990) Emulsion properties of small red bean protein isolates. Korean J. Soc. Food Sci. 6, 9-14.
  18. Kuraishi, C., Sakamoto, J., Yamazaki, K., Susa, Y., Kuhara, C., and Soeda, T. (1997) Production of restructured meat using microbial transglutaminase without salt or cooking. J. Food Sci. 62, 488-490. https://doi.org/10.1111/j.1365-2621.1997.tb04412.x
  19. Lee, D. S. (2005) Improvement of emulsion stability of food proteins by microbial transglutaminase. Korean J. Food Sci. Technol. 37, 164-170.
  20. Lin, K. W. and Mei, M. Y. (2000) Influences of gums, soy protein isolate, and heating temperatures on reduced-fat meat batters in a model system. Food Chem. Toxicol. 65, 48-52.
  21. Meng, G. T. and Ma, C. Y. (2001) Flow property of globulin from red bean (Phaseolus angularis). Food Res. Int. 34, 401-407. https://doi.org/10.1016/S0963-9969(00)00184-8
  22. Meng, G. T. and Ma, C. Y. (2002) Charaterization of globulin from Phaseolus angularis (red bean). Int. J. Food Sci. Technol. 37, 687-695. https://doi.org/10.1046/j.1365-2621.2002.00601.x
  23. Nio, N., Motoki, M., and Takinami, K. (1986) Gelation mechanism of protein solution by transglutaminase. Agric. Biol. Chem. 50, 851-855. https://doi.org/10.1271/bbb1961.50.851
  24. Pietrasik, Z., Jarmoluk, A., and Shand, P. J. (2007) Effect of non-meat proteins on hydration and textural properties of pork meat gels enhanced with microbial transglutaminase. Swiss Soc. Food Sci. Technol. 40, 915-920.
  25. Ramirez-Suarez, J. C. and Xiong, Y. L. (2003) Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures. Meat Sci. 65, 899-907. https://doi.org/10.1016/S0309-1740(02)00297-8
  26. Ramirez-Suarez, J. C. and Xiong, Y. L. (2003) Rheological properties of mixed muscle/nonmuscle protein emulsions treated with transglutaminase at two ionic strengths. Intl. J. Food Sci. Technol. 38, 777-785. https://doi.org/10.1046/j.1365-2621.2003.00731.x
  27. Ramirez-Suarez, J. C. and Xiong, Y. L. (2002) Transglutaminase cross-linking of whey/myofibrillar proteins and the effect on protein gelation. Food Chem. Toxicol. 67, 2885-2891.
  28. Renkema, Jacoba M. S., Lakemond, Catriona M. M., de Jongh, Harmen H. J., Gruppen, H., and Vliet, T. V. (2000) The effect of pH on heat denaturation and gel forming properties of soy proteins. J. Biotechnol. 79, 223-230. https://doi.org/10.1016/S0168-1656(00)00239-X
  29. Trespalacios, P. and Pla, R. (2007) Simultaneous application of transglutaminase and high pressure to improve functional properties of chicken meat gels. Food Chem. 100, 264-272. https://doi.org/10.1016/j.foodchem.2005.09.058

Cited by

  1. Development of Giant Squid (Ommastrephes bartrami) Surimi-based Products with Gel Texture Enhancers and the Effects of Setting on Gel Quality vol.41, pp.7, 2012, https://doi.org/10.3746/jkfn.2012.41.7.975
  2. Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values vol.35, pp.6, 2015, https://doi.org/10.5851/kosfa.2015.35.6.841
  3. Effect of red bean protein isolate and salt levels on pork myofibrillar protein gels mediated by microbial transglutaminase vol.76, 2017, https://doi.org/10.1016/j.lwt.2016.10.039
  4. Effects of Glucomannan, Carrageenan, Carboxymethyl cellulose, and Transglutaminase-B on the Quality Properties of Pork Patties Containing Pork Skin Connective Tissue vol.54, pp.4, 2012, https://doi.org/10.5187/JAST.2012.54.4.307
  5. Evaluation of red bean protein [Vigna angularis] isolate on rheological properties of pork myofibrillar protein gels induced by microbial transglutaminase vol.50, pp.7, 2015, https://doi.org/10.1111/ijfs.12809
  6. Effects of Red Bean (Vigna angularis) Protein Isolates on Rheological Properties of Microbial Transglutaminase Mediated Pork Myofibrillar Protein Gels as Affected by Fractioning and Preheat Treatment vol.36, pp.5, 2011, https://doi.org/10.5851/kosfa.2016.36.5.671
  7. Controlling Ingredients for Healthier Meat Products: Clean Label vol.4, pp.2, 2020, https://doi.org/10.22175/mmb.9520