DOI QR코드

DOI QR Code

Linkage Disequilibrium and Effective Population Size in Hanwoo Korean Cattle

  • Lee, S.H. (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Cho, Y.M. (Research Policy Bureau, Rural Development Administration) ;
  • Lim, D. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Kim, H.C. (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Choi, B.H. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Park, H.S. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Kim, O.H. (Department of Animal Science, Kon-Kuk University) ;
  • Kim, S. (Research Policy Bureau, Rural Development Administration) ;
  • Kim, T.H. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Yoon, D. (Department of Animal Science, Kyung-Pook National University) ;
  • Hong, S.K. (Hanwoo Experiment Station, National Institute of Animal Science, RDA)
  • Received : 2011.06.01
  • Accepted : 2011.09.22
  • Published : 2011.12.01

Abstract

This study presents a linkage disequilibrium (LD) analysis and effective population size ($N_e$) for the entire Hanwoo Korean cattle genome, which is the first LD map and effective population size estimate ever calculated for this breed. A panel of 4,525 markers was used in the final LD analysis. The pairwise $r^2$ statistic of SNPs up to 50 Mb apart across the genome was estimated. A mean value of $r^2$ = 0.23 was observed in pairwise distances of <25 kb and dropped to 0.1 at 40 to 60 kb, which is similar to the average intermarker distance used in this study. The proportion of SNPs in useful LD ($r^2{\geq}0.25$) was 20% for the distance of 10 and 20 kb between SNPs. Analyses of past effective population size estimates based on direct estimates of recombination rates from SNP data demonstrated that a decline in effective population size to $N_e$ = 98.1 occurred up to three generations ago.

Keywords

References

  1. Abecasis, G. R., S. S. Cherny, W. O. Cookson and L. R. Cardon. 2002. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30:97-101. https://doi.org/10.1038/ng786
  2. Arias, J. A., M. Keehan, P. Fisher, W. Coppieters and R. Spelman. 2009. A high density linkage map of the bovine genome. BMC Genet. 10:1471-2156.
  3. Bohmanova, J., M. Sargolzaei and F. S. Schenkel. 2010. Characteristics of linkage disequilibrium in North American Holsteins. BMC Genomics 11: doi:10.1186/1471-2164-11-421
  4. Decker, J. E., J. C. Pires, G. C. Conant, S. D. Mckay, M. P. Heaton, K. Chen, A. Cooper, J. Vilkki, C. M. Seabury, A. R. Caetano, G. S. Johnson, R. A. Brennenman, O. Hanotte, L. S. Eggert, P. Wiener, J. J. Kim, K. S. Kim, T. S. Sonstegard, C. P. van Tassell, H. L. Neibergs, J. C. McEwan, R. Brauning, L. L. Coutinho, M. E. Babar G. A. Wilson, M. C. McClue, M. M. Rolf, J. W. Kim, R. D. Schnabel and J. E. Taylor. 2009. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. PNAS 106:18644-18649 https://doi.org/10.1073/pnas.0904691106
  5. Du, F. X., A. C. Clutter and M. M. Lohuis. 2007. Characterizing linkage disequilibrium in pig population. Int. J. Biol. Sci. 3:166-178.
  6. Han, S. W. 1996. The breed of cattles. Sun-Jin publishing pp. 148-160.
  7. Hayes, B. J. 2008. QTL mapping, MAS and Genomic selection. Text book for Armidale summer animal breeding course pp. 6-10.
  8. Hedrick, P. 1987. Gametic disequilibrium measures: proceed with caution. Genetics 117:331-341.
  9. Khatkar, M. S., K. R. Zenger, M. Hobbs, R. J. Hawken, J. A. L. Cavanagh, W. Barris, A. E. McClintock, S. McClintock, P. C. Thomson, B. Tier, F. W. Nicholas and H. W. Raadsma. 2007. A primary assembly of a bovine haplotype block map based on a 15 k SNP panel genotyped in Holstein-Friesian cattle. Genetics 176:763-772.
  10. Kim, E. S. and B. W. Kirkpatrick. 2009. Linkage disequilibrium in the North American Holstein population. Anim. Genet. 40:279-288. https://doi.org/10.1111/j.1365-2052.2008.01831.x
  11. Lee, C. and E. J. Pollak. 2002. Genetic antagonism between body weight and milk production in beef cattle. J. Anim. Sci 80:316-321.
  12. Lee, S. H. 2010. Genome analysis to identify QTL and genes affecting carcass traits in Hanwoo (Korean cattle). The University of New England, PhD thesis, pp. 10-20.
  13. Lewontin, R. C. 1964. The interaction of selection and linkage. I. General considerations; heterotic model. Genetics 49:49-67.
  14. Lindblad-Toh, K et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803-819. https://doi.org/10.1038/nature04338
  15. Hill, W. G, and A. Roberson. 1968. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38:226-231. https://doi.org/10.1007/BF01245622
  16. McKay, S. D., R. D. Schnabel, B. M. Murdoch, L. K. Matukumalli, J. Aerts, W. Coppieters, D. Crews E. D. Neto, C. A. Gill, Chuan Gao, H. Mannen, P. Stothard, Z. Wang C. P. van Tassell, J. L. Williams J. F. Taylor, and S. S. Moore. 2007. Whole genome linkage disequilibrium maps in cattle. BMC Genet. 8:74. doi: 10.1186/1471-2156-8-74.
  17. Meuwissen, T. H. E., B. J. Hayes and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
  18. R Development Core Team: R: a language and environment for statistical computing. 2008 R Foundation for statistical computing, Vienna, Austria.
  19. Sved, J. V. 1971 Linkage disequilibrium and homozygosity of chromosome segments in finite population. Theor. Popul. Biol. 2:125-141. https://doi.org/10.1016/0040-5809(71)90011-6
  20. Tenesa, A., P. Navarro, B. J. Hayes, D. L. Duffy, G. M. Clarke, M. E. Goddard and P. M. Visscher. 2007. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17:520-526. https://doi.org/10.1101/gr.6023607
  21. The international HapMap Consortium 2005. A haplotype map of the human genome. Nature 437:1299-1320. https://doi.org/10.1038/nature04226
  22. Yoon, D. H., E. W. Park, S. H. Lee, H. K. Lee, S. J. Oh, I. C. Cheong and K. C. Hong. 2005. Assessment of genetic diversity and relationships between Korean cattle and other cattle breeds by microsatellite loci. J. Anim. Sci. Technol. (Kor) 47(3):341-354. https://doi.org/10.5187/JAST.2005.47.3.341

Cited by

  1. Coalescent-Based Method for Learning Parameters of Admixture Events from Large-Scale Genetic Variation Data vol.10, pp.5, 2013, https://doi.org/10.1109/TCBB.2013.98
  2. Genome-Wide Association Study Identifies Major Loci for Carcass Weight on BTA14 in Hanwoo (Korean Cattle) vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0074677
  3. Towards breed formation by island model divergence in Korean cattle vol.15, pp.1, 2015, https://doi.org/10.1186/s12862-015-0563-2
  4. Genome-wide linkage disequilibrium analysis of indigenous cattle breeds of Ethiopia and Korea using different SNP genotyping BeadChips vol.37, pp.9, 2015, https://doi.org/10.1007/s13258-015-0304-3
  5. Linkage disequilibrium in the estimation of genetic and demographic parameters of extensively raised chicken populations vol.71, pp.03, 2015, https://doi.org/10.1017/S0043933915002202
  6. Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip vol.14, pp.4, 2016, https://doi.org/10.5808/GI.2016.14.4.230
  7. Prioritization for conservation of Iranian native cattle breeds based on genome-wide SNP data vol.17, pp.1, 2016, https://doi.org/10.1007/s10592-015-0762-9
  8. Genetic Divergence of Cattle Populations Based on Genomic Information vol.47, pp.3, 2016, https://doi.org/10.1515/sab-2016-0016
  9. Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds vol.48, pp.1, 2016, https://doi.org/10.1111/age.12488
  10. Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture vol.49, pp.1, 2017, https://doi.org/10.1186/s12711-016-0283-0
  11. Estimation of linkage disequilibrium and analysis of genetic diversity in Korean chicken lines vol.13, pp.2, 2018, https://doi.org/10.1371/journal.pone.0192063
  12. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection vol.56, pp.1, 2011, https://doi.org/10.1186/2055-0391-56-2
  13. Extent of Linkage Disequilibrium and Effective Population Size in Four South African Sanga Cattle Breeds vol.6, pp.None, 2011, https://doi.org/10.3389/fgene.2015.00337
  14. Artificial selection increased body weight but induced increase of runs of homozygosity in Hanwoo cattle vol.13, pp.3, 2011, https://doi.org/10.1371/journal.pone.0193701
  15. Genome-Wide Association Study of Meat Quality Traits in Hanwoo Beef Cattle Using Imputed Whole-Genome Sequence Data vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.01235
  16. Evaluation of Linkage Disequilibrium, Effective Population Size and Haplotype Block Structure in Chinese Cattle vol.9, pp.3, 2019, https://doi.org/10.3390/ani9030083
  17. Estimation of Linkage Disequilibrium and Effective Population Size in Three Italian Autochthonous Beef Breeds vol.10, pp.6, 2011, https://doi.org/10.3390/ani10061034
  18. Fine-scale analysis of six beef cattle breeds revealed patterns of their genomic diversity vol.19, pp.1, 2020, https://doi.org/10.1080/1828051x.2020.1852894
  19. Marker genotyping error effects on genomic predictions under different genetic architectures vol.296, pp.1, 2011, https://doi.org/10.1007/s00438-020-01728-z
  20. Diversity analysis, runs of homozygosity and genomic inbreeding reveal recent selection in Blanco Orejinegro cattle vol.138, pp.5, 2021, https://doi.org/10.1111/jbg.12549