DOI QR코드

DOI QR Code

Densification and Nanocrystallization of Water-Atomized Pure Iron Powder Using High Pressure Torsion

수분사법으로 제조된 순철 분말의 고압비틀림 성형 공정에 의한 치밀화 및 나노결정화

  • Yoon, Eun-Yoo (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology)) ;
  • Lee, Dong-Jun (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology)) ;
  • Kim, Ha-Neul (New Materials Research Department, RIST) ;
  • Kang, Hee-Soo (New Materials Research Department, RIST) ;
  • Lee, Eon-Sik (New Materials Research Department, RIST) ;
  • Kim, Hyoung-Seop (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology))
  • 윤은유 (포항공과대학교 신소재공학과) ;
  • 이동준 (포항공과대학교 신소재공학과) ;
  • 김하늘 (포항산업과학연구원 신금속연구본부) ;
  • 강희수 (포항산업과학연구원 신금속연구본부) ;
  • 이언식 (포항산업과학연구원 신금속연구본부) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2011.06.23
  • Accepted : 2011.08.01
  • Published : 2011.10.28

Abstract

In this study, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Water-atomized pure iron powders were consolidated to disc-shaped samples at room temperature using HPT of 10 GPa up to 3 turns. The resulting microstructural size decreases with increasing strain and reaches a steady-state with nanocrystalline (down to ~250 nm in average grain size) structure. The water-atomized iron powders were deformed plastically as well as fully densified, as high as 99% of relative density by high pressure, resulting in effective grain size refinements and enhanced microhardness values.

Keywords

References

  1. H. S. Kim and D. N. Lee: J. Kor. Inst. Metal., 20 (1992) 37.
  2. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci., 45 (2000) 103. https://doi.org/10.1016/S0079-6425(99)00007-9
  3. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer and Y. T. Zhu: JOM, 58 (2006) 33.
  4. H. S. Kim, M. H. Seo and S. I. Hong: Mater. Sci. Eng. A, 291 (2000) 86. https://doi.org/10.1016/S0921-5093(00)00970-9
  5. S. C. Yoon and H. S. Kim: Mater. Sci. Forum., 490 (2006) 221.
  6. A. V. Korznikov, I. Safarov, D. V. Laptionok and R. Z. Valiev: Acta Mater., 39 (1991) 3193. https://doi.org/10.1016/0956-7151(91)90054-5
  7. H. Shen, B. Guenther, A.V. Koanikov and R. Z. Valiev: Nanostruct. Mater., 6 (1995) 385. https://doi.org/10.1016/0965-9773(95)00077-1
  8. R. Z. Valiev, R. S. Mishra, J. Groza and A. K. Mukherjee: Scripta Mater., 34 (1996) 1443. https://doi.org/10.1016/1359-6462(95)00676-1
  9. J. Sort, A. P. Zhilyaev, M. Zielinska, J. Nogues, S. Surinach, J. Thibault and M. D. Baro: Acta Mater., 51 (2003) 6385. https://doi.org/10.1016/j.actamat.2003.08.006
  10. Z. Lee, F. Zhou, R. Z. Valiev, E. J. Lavernia and S. R. Nutt: Scripta Mater., 51 (2004) 209. https://doi.org/10.1016/j.scriptamat.2004.04.016
  11. E. Y. Yoon, H. J. Chae, T.-S. Kim, C. S. Lee and H. S. Kim: J. Korean Powder Metall. Inst., 17 (2010) 190 (Korean). https://doi.org/10.4150/KPMI.2010.17.3.190
  12. S.-H. Joo, S. C. Yoon, C. S. Lee and H. S. Kim: J. Korean Powder Metall. Inst., 17 (2010) 52 (Korean). https://doi.org/10.4150/KPMI.2010.17.1.052
  13. T. Tokunaga, K. Kaneko and Z. Horita: Mater. Sci. Eng. A, 490 (2008) 300. https://doi.org/10.1016/j.msea.2008.02.022
  14. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Nanostruct. Mater., 10 (1998) 45. https://doi.org/10.1016/S0965-9773(98)00026-9
  15. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe and R. Z. Valiev: Powder Metall., 41 (1998) 11. https://doi.org/10.1179/pom.1998.41.1.11
  16. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Metall. Mater. Trans. A, 29 (1998) 2253. https://doi.org/10.1007/s11661-998-0103-4
  17. V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Mater. Sci. Eng. A, 282 (2000) 78. https://doi.org/10.1016/S0921-5093(99)00764-9
  18. R. Kuzel, Z. Matej, V. Cherkaska, J. Pesicka, J. Cizek, I. Prochazka and R. K. Islamgaliev: J. Alloys Compd., 378 (2004) 242. https://doi.org/10.1016/j.jallcom.2003.12.048
  19. R. K. Islamgaliev, W. Buchgraber, Y. R. Kolobov, N. M. Amirkhanov, A. V. Sergueeva, K. V. Ivanov and G. P. Grabovetskaya: Mater. Sci. Eng. A, 319 (2001) 872. https://doi.org/10.1016/S0921-5093(01)01073-5
  20. T. Tokunaga, K. Kaneko, K. Sato and Z. Horita: Scripta Mater., 58 (2008) 735. https://doi.org/10.1016/j.scriptamat.2007.12.010
  21. E. Menendez, J. Sort, V. Langlais, A. Zhilyaev, J.S. Munoz, S. Surinach, J. Nogues and M. D. Baro: J. Alloys Compd., 434 (2007) 505. https://doi.org/10.1016/j.jallcom.2006.08.142
  22. E. Menendez, G. Salazar-Alvarez, A. P. Zhilyaev, S. Surinach, M. D. Baro, J. Nogues and J. Sort: Adv. Funct. Mater., 18 (2008) 3293. https://doi.org/10.1002/adfm.200800456
  23. H. Li, A. Misra, Y. Zhu, Z. Horita, C. C. Koch and T. G. Holesinger: Mater. Sci. Eng. A, 523 (2009) 60. https://doi.org/10.1016/j.msea.2009.05.031
  24. H. Li, A. Misra, Z. Horita, C. C. Koch, N. A. Mara, P. O. Dickerson and Y. Zhu: J. Appl. Phys., 95 (2009). 071907.
  25. A. Bachmaier, A. Hohenwartera and R. Pippana: Scripta Mater., 61 (2009) 1016. https://doi.org/10.1016/j.scriptamat.2009.08.016
  26. W. J. Botta Filho, J. B. Fogagnolo, C.A.D. Rodrigues, C. S. Kiminami, C. Bolfarini and A. R. Yavari: Mater. Sci. Eng. A, 375 (2004) 936. https://doi.org/10.1016/j.msea.2003.10.072
  27. J. Sort, D. C. Ile, A. P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert and M. D. Baro: Scripta Mater., 50 (2004) 1221. https://doi.org/10.1016/j.scriptamat.2004.02.004
  28. A. R. Yavari, W. J. Botta Filho, C. A. D. Rodrigues, C. Cardoso and R. Z. Valiev: Scripta Mater., 46 (2002) 711. https://doi.org/10.1016/S1359-6462(02)00057-X
  29. F. J. Humphreys: Scripta. Mater., 51 (2004) 771. https://doi.org/10.1016/j.scriptamat.2004.05.016
  30. H. S. Kim: Mater. Sci. Eng., A315 (2001) 122.
  31. B. S. Moon, H. S. Kim and S. I. Hong: Scripta. Mater., 46 (2002) 131. https://doi.org/10.1016/S1359-6462(01)01209-X
  32. Y. Harai, Y. Ito and Z. Horita: Scripta. Mater., 58 (2008) 469. https://doi.org/10.1016/j.scriptamat.2007.10.037

Cited by

  1. Ultrafine Grained Cu-diamond Composites using High Pressure Torsion vol.19, pp.3, 2012, https://doi.org/10.4150/KPMI.2012.19.3.204
  2. Trend in Research of Powder Consolidation Using Severe Plastic Deformation vol.20, pp.2, 2013, https://doi.org/10.4150/KPMI.2013.20.2.148
  3. Microstructure Evolution and Mechanical Properties of Al-1080 Processed by a Combination of Equal Channel Angular Pressing and High Pressure Torsion vol.44, pp.6, 2013, https://doi.org/10.1007/s11661-013-1629-7