DOI QR코드

DOI QR Code

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process

스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향

  • Kim, Kyung-Tae (Powder Technology Research Group, Korea Institute of Materials Science) ;
  • Koo, Hye-Young (Powder Technology Research Group, Korea Institute of Materials Science) ;
  • Ha, Gook-Hyun (Powder Technology Research Group, Korea Institute of Materials Science)
  • 김경태 (한국기계연구원 부설 재료연구소, 분말기술연구그룹) ;
  • 구혜영 (한국기계연구원 부설 재료연구소, 분말기술연구그룹) ;
  • 하국현 (한국기계연구원 부설 재료연구소, 분말기술연구그룹)
  • Received : 2011.07.01
  • Accepted : 2011.08.13
  • Published : 2011.10.28

Abstract

Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Keywords

References

  1. R. Venkatasubramanian, E. Silvola, T. Colpitts and B. O'Quinn: Science, 413 (2001) 297.
  2. M. Toprak, Y. Zhang and M. Muhammed: Mat. Lett., 57 (2003) 3976. https://doi.org/10.1016/S0167-577X(03)00250-7
  3. K. T. Kim, K. M. Jan and G. H. Ha: J. Korean Powder Metall. Inst., 17 (2010) 136 (Korean). https://doi.org/10.4150/KPMI.2010.17.2.136
  4. K. T. Kim, D. W. Kim and G. H. Ha: Res. Chem. Intermed., 36 (2010) 835 https://doi.org/10.1007/s11164-010-0188-4
  5. D. M. Rowe: CRC Handbook of Thermoelectrics, CRC Press, Inc., New York (1995).
  6. K. T. Kim and G. H. Ha: J. of Nanosci. and Nanotech., 11 (2011)
  7. H. Bottner, J. Nurnus, J. A. Gavriko, G. Kühner, M. Jägle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert and K. H. Schlereth: J. Microelectromech. Syst., 13 (2004) 414. https://doi.org/10.1109/JMEMS.2004.828740
  8. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik and N. ElMasry: J. Cryst. Growth, 170 (1997) 817. https://doi.org/10.1016/S0022-0248(96)00656-2
  9. C. Navone, M. Soulier, M. Plissonnier and A. L. Seiler: J. Elect. Mater., 39 (2010) 1755. https://doi.org/10.1007/s11664-010-1187-3
  10. K. T. Kim, K. M. Jang and G. H. Ha: Rev. Adv. Mater. Sci., 28 (2011) 14.

Cited by

  1. Flexible Thermoelectric Device Using Thick Films for Energy Harvesting from the Human Body vol.54, pp.6, 2017, https://doi.org/10.4191/kcers.2017.54.6.07