DOI QR코드

DOI QR Code

Two-Dimensional Arrays of Gold Nanoparticles for Plasmonic Nanosensor

  • Received : 2011.08.18
  • Accepted : 2011.09.07
  • Published : 2011.10.27

Abstract

Two dimensional (2D) arrays of noble metal nanoparticles are widely used in the sensing of nanoscale biological and chemical events. Research in this area has sparked considerable interest in many fields owing to the novel optical properties, e.g., the localized surface plasmon resonance, of these metallic nanoarrays. In this paper, we report successes in fabricating 2D arrays of gold nano-islands using nanosphere lithography. The reproducibility and the effectiveness of the nano-patterning method are tested by means of spin coating and capillary force deposition. We found that the capillary force deposition method was more effective for nanospheres with diameters greater than 600 nm, whereas the spin coating method works better for nanospheres with diameters less than 600 nm. The optimal deposition parameters for both methods were reported, showing about 80% reproducibility. In addition, we characterize gold nano-island arrays both geometrically with AFM as well as optically with UV-VIS spectrometry. The AFM images revealed that the obtained nano-arrays formed a hexagonal pattern of truncated tetrahedron nano-islands. The experimental and theoretical values of the geometric parameters were compared. The 2D gold nano-arrays showed strong LSPR in the absorption spectra. As the nano-islands increased in size, the LSPR absorption bands became red-shifted. Linear dependence of the plasmon absorption maximum on the size of the gold nano-islands was identified through the increment in the plasmon absorption maximum rate for a one nanometer increase in the characteristic length of the nano-islands. We found that the 2D gold nano-arrays showed nearly seven-fold higher sensitivity of the absorption spectrum to the size of the nano-islands as compared to colloidal gold nano-particles.

Keywords

References

  1. W. L. Barnes, A. Dereux and T. W. Ebbesen, Nature, 424, 824 (2003). https://doi.org/10.1038/nature01937
  2. D. -H. Kim, Kor. J. Mater. Res., 16(7), 408 (2006). https://doi.org/10.3740/MRSK.2006.16.7.408
  3. M. C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004). https://doi.org/10.1021/cr030698+
  4. S. Nie and S. R. Emory, Science, 275, 1102 (1997). https://doi.org/10.1126/science.275.5303.1102
  5. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne and S. Zou, MRS Bulletin, 30, 368 (2005). https://doi.org/10.1557/mrs2005.100
  6. J. S. Cooper, B. Raguse, E. Chow, L. Hubble, K. -H. Mueller and L. Wieczorek, Anal. Chem., 82, 3788 (2010). https://doi.org/10.1021/ac1001788
  7. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and C. A. Mirkin, Science, 277, 1078 (1997). https://doi.org/10.1126/science.277.5329.1078
  8. N. L. Rosi and C. A. Mirkin, Chem. Rev., 105, 1547 (2005). https://doi.org/10.1021/cr030067f
  9. E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger and J. P. Spatz, Biophys. J., 92, 2964 (2007). https://doi.org/10.1529/biophysj.106.089730
  10. D. G. Castner and B. D. Ratner, Surf. Sci., 500, 28 (2002). https://doi.org/10.1016/S0039-6028(01)01587-4
  11. A. Folch and M. Toner, Annu. Rev. Biomed. Eng., 2, 227 (2000). https://doi.org/10.1146/annurev.bioeng.2.1.227
  12. U. Ch. Fischer and H. P. Zingsheim, J. Vac. Sci. Tech., 19, 881 (1981). https://doi.org/10.1116/1.571227
  13. O. J. F. Martin, Microelectron. Eng., 67-68, 24 (2003). https://doi.org/10.1016/S0167-9317(03)00167-9
  14. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001). https://doi.org/10.1021/jp010657m
  15. J. C. Hulteen and R. P. Vanu Duyne, J. Vac. Sci. Tech., 13, 1553 (1995). https://doi.org/10.1116/1.579726
  16. J. H. Slater and W. Frey, J. Biomed. Mater. Res., 87A, 176 (2008). https://doi.org/10.1002/jbm.a.31725
  17. A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem., 379, 920 (2004). https://doi.org/10.1007/s00216-004-2708-9
  18. W. Huang, W. Qian and M. A. El-Sayed, J. Phys. Chem. B, 109, 18881 (2005). https://doi.org/10.1021/jp0526647
  19. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003).
  20. R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz and C. A. Mirkin, Nature, 425, 487 (2003). https://doi.org/10.1038/nature02020
  21. P. K. Jain, K. S. Lee, I. H. El-Sayed and M. A. El-Sayed, J. Phys. Chem. B, 110, 7238 (2006). https://doi.org/10.1021/jp057170o
  22. S. Link and M. A. El-Sayed, J. Phys. Chem. B, 103, 8410 (1999). https://doi.org/10.1021/jp9917648