DOI QR코드

DOI QR Code

Evaluation of Fatigue Life and Structural Analysis for Dish-Type and Spoke-Type Automobile Wheels

승용차용 디쉬 타입과 스포크 타입 휠에 대한 구조 해석과 피로 수명 예측

  • Received : 2011.05.20
  • Accepted : 2011.07.26
  • Published : 2011.10.01

Abstract

Prior to the experimental and production stages of goods, the strengths should be evaluated in the design stage. The introduction of commercial codes at the design stage gives benefits such as cost and time economies in the production and strength evaluation. In this study, structural analysis and fatigue analysis are carried out using ANSYS modeling of the 3D geometry of the wheel. In a comparison of dish-type and spoke-type wheels, it is shown that the deformation and maximum equivalent stress for the dish-type wheels are lower than those for spoke-type wheels. Nevertheless, spoke-type wheels are often used because they are light and have exhibit excellent cooling performance. Furthermore, according to the results of life analysis, aluminum wheels show improved resistance to fatigue compared to steel wheels.

제품 생산과 실험에 앞서 설계 단계에서의 강도 평가가 이루어져야 하며, 이 단계에서 범용 프로그램인 ANSYS 의 도입 및 활용은 제품의 생산과 강도 평가에 있어서 시간과 비용의 절감 등 여러 가지 이점을 갖게 한다. 본 연구에서는 ANSYS 를 이용하여 승용차용 디쉬 타입과 스포크 타입의 휠을 3 차원 형상으로 모델링하고 구조해석과 피로해석을 수행하였다. 디쉬 타입과 스포크 타입에 대한 해석 결과를 비교해 보면, 디쉬 타입이 스포크 타입보다 변형이 적게 일어나고 최대등가응력도 작음을 알 수 있다. 그럼에도 불구하고, 스포크 타입이 경량과 우수한 냉각성능으로 인해 자주 사용되고 있다. 수명에 대한 피로 해석 결과, 알루미늄 휠이 스틸 휠보다 피로 저항력이 우수함을 보였다.

Keywords

References

  1. Song, J. Y., Park, J. C. and Ahn, Y. S., 2010, "Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel," Trans. of the KFS, Vol.30, No.1, pp.46-51.
  2. Kim, M. S., Ko, K. J., Song, H. W., Yang, C. G. and Kim, K. M., 2004, "The Finite Element Analysis on 2-piece Forged Wheel for Fatigue Life Prediction," Proc. of the KSAE, Fall Conference, pp.691-696.
  3. Kim, M. S., Ko, K. J., Kim, J. H., Yang, C. G. and Kim, K. M., 2004, "The Study on the Fatigue Life Prediction on Wheels Through CAE," Trans. of the KSAE, Vol.12, No.2, pp.117-122.
  4. Ko, K. J., Kim, M. S., Song, H. W. and Yang, C. G., 2006, "A Study on the Stiffness of a 13degree-Type Impact Tester for Aluminum Wheels," Trans. of the KSAE, Vol.14, No.4, pp.12-19.
  5. Noh, B. W., Bae, S. I. and Kim, D. K., 1997, "Structural Analysis of Aluminum Wheel for Automobiles," Proc. of the KSPE Fall Conference, pp.822-825.
  6. Jeong, S. K., 2004, Study on the Alloy Wheel Design of the Car, Hongik University, Master's Thesis.
  7. Kim, B., S., Chi, C., H. and Mun, S., D., 2001, "An Experimental Study on Vibration Characteristics of Alalloy Wheel for Passenger Car," Proc. of the KSME Fall Conference, pp.623-628.
  8. Kim, B. S., 2005, "An Study on Vibration Characteristics of Automobile Al-alloy Wheel," Trans. of the KSMTE, Vol.14, No.3, pp.122-127.
  9. Kim, S., 2006, Performance Analysis of Automotive Wheel Through Dynamic Simulation, Chonbuk National University, Master's Thesis.
  10. Cho, J. U. and Han, M. S., 2010, "Analysis of Fatigue Damage at Wheel under Variable Load," Trans. of the KSMTE, Vol.19, No.6, pp.717-894.
  11. Sherwood, J., A., Ayres, J., M., Gross, T., S. and Watt, D., 1995, "An Investigation of Tire-Wheel Interface Loads Using ADINA," Computers & Structures, Vol.56, No.2-3, pp.377-387. https://doi.org/10.1016/0045-7949(95)00030-K
  12. Kalyanasundaram, S., Lowe, A. and Watters, A. J., 2006, "Finite Element Analysis and Optimization of Composite Wheelchair Wheels," Composite Structures, Vol.75, No.1-4, pp.393-399. https://doi.org/10.1016/j.compstruct.2006.04.011
  13. Moaveni, S., 2008, Theory and Application with ANSYS, Pearson Education/Prentice Hall., USA.
  14. Swanson, J., 2009, Ansys 12.0, Ansys Inc., USA.
  15. Kim, K., S., Lim, H., S. , Kim, D., G. and Cho, J., G., 2010, Automotive Chassis, Goomibook, Korea.
  16. Song, M., J., Jung, S., Y., Hwang, B., C. and Kim, C., 2010, "A Study on Structure Analysis and Fatigue Life of the Common Rail Pipe," Trans. of Materials Processing, Vol.19, No.2, pp.88-94. https://doi.org/10.5228/KSPP.2010.19.2.088

Cited by

  1. A Property of Crack Propagation at the Specimen of CFRP with Layer Angle vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.1013
  2. An Analytical Study on Crack Behavior Inside Standard Compact Tension Specimen with Holes vol.40, pp.6, 2016, https://doi.org/10.3795/KSME-A.2016.40.6.531