DOI QR코드

DOI QR Code

Heat-Flux Analysis of Solar Furnace Using the Monte Carlo Ray-Tracing Method

몬테카를로 광선추적법을 이용한 태양로의 열유속 해석

  • Lee, Hyun-Jin (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research) ;
  • Kim, Jong-Kyu (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research) ;
  • Lee, Sang-Nam (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research) ;
  • Kang, Yong-Heack (Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research)
  • 이현진 (한국에너지기술연구원 태양열지열연구센터) ;
  • 김종규 (한국에너지기술연구원 태양열지열연구센터) ;
  • 이상남 (한국에너지기술연구원 태양열지열연구센터) ;
  • 강용혁 (한국에너지기술연구원 태양열지열연구센터)
  • Received : 2010.12.16
  • Accepted : 2011.08.10
  • Published : 2011.10.01

Abstract

An understanding of the concentrated solar flux is critical for the analysis and design of solar-energy-utilization systems. The current work focuses on the development of an algorithm that uses the Monte Carlo ray-tracing method with excellent flexibility and expandability; this method considers both solar limb darkening and the surface slope error of reflectors, thereby analyzing the solar flux. A comparison of the modeling results with measurements at the solar furnace in Korea Institute of Energy Research (KIER) show good agreement within a measurement uncertainty of 10%. The model evaluates the concentration performance of the KIER solar furnace with a tracking accuracy of 2 mrad and a maximum attainable concentration ratio of 4400 sun. Flux variations according to measurement position and flux distributions depending on acceptance angles provide detailed information for the design of chemical reactors or secondary concentrators.

태양의 집광 열유속을 이해하는 것은 태양에너지를 이용하는 시스템의 해석과 설계에 중요하다. 본 연구는 우수한 유연성과 확장성을 가진 몬테카를로 광선추적법에 기반하면서 태양주연감광과 반사판 표면 기울기 에러를 고려하는 알고리듬 개발과 이를 통한 태양 열유속 해석에 초점을 맞추고 있다. 검증을 위해 한국에너지기술연구원 태양로에서 측정된 열유속과 비교했을 때, 모델링 결과가 측정 에러 범위인 10% 이내에서 잘 일치하였다. 개발된 모델을 통해 태양로의 집광 성능을 2 mrad 의 추적 정밀도에 최대로 도달 가능한 집광비가 4400 sun 으로 평가하였다. 열유속의 측정 위치에 따른 변화와 수광각에 따른 분포를 통해 화학반응기나 보조집광기 설계에 필요한 상세한 정보를 제공하였다.

Keywords

References

  1. Steinfeld, A., 2005, "Solar Thermochemical Production of Hydrogen - a Review," Solar Energy, Vol. 78, pp. 603-615. https://doi.org/10.1016/j.solener.2003.12.012
  2. Garcia, P., Ferriere, A. and Bezian, J. J., 2008, "Codes for Solar Flux Calculation Dedicated to Central Receiver System Applications: a Comparative Review," Solar Energy, Vol. 82, pp. 189-197. https://doi.org/10.1016/j.solener.2007.08.004
  3. Siegel, R. and Howell, J. R., 2002, Thermal Radiation Heat Transfer, 4th ed., Taylor & Francis, New York, pp. 390-406.
  4. Park, Y. C. and Kang, Y. H., 1998, "Computation of Sun Position for the Sun Tracking Control System of Solar Concentrator," J. of the Korean Solar Energy Society, Vol. 18, No. 4, pp. 87-94.
  5. Negi, B. S., Bhowmik, N. C., Mathur, S. S. and Kandpal, T. C., 1986, "Ray Trace Evaluation of Solar Concentrators Including Limb Darkening Effects," Solar Energy, Vol. 36, No. 3, pp. 293-296. https://doi.org/10.1016/0038-092X(86)90145-3
  6. Arthur, N. C., 2010, Allen's Astrophysical Quantities, Springer, New York, pp. 355-357.
  7. Buie, D., Monger, A. G. and Dey, C. J., 2003, "Sunshape Distributions for Terrestrial Solar Simulations," Solar Energy, Vol. 74, pp. 113-122. https://doi.org/10.1016/S0038-092X(03)00125-7
  8. Neumann, A., Witzke, A., Jones, S. A. and Schmitt, G., 2002, "Representative Terrestrial Solar Brightness Profiles," J. of Solar Engineering, Vol. 124, pp. 198-204. https://doi.org/10.1115/1.1464880
  9. Romero-Alvarez, M. and Zarza, E., 2007, Handbook of Energy Efficiency and Renewable Energy, Taylor & Francis, Taylor & Francis, New York, Chapter 21.
  10. Garcia, D., 2010, "Robust Smoothing of Gridded Data in One and Higher Dimensions with Missing Values," Computational Statistics and Data Analysis, Vol. 54, pp. 1167-1178. https://doi.org/10.1016/j.csda.2009.09.020
  11. Kang, Y. H., 2009, Report to Korea Research Council for Industrial Science and Technology, "Development of High-Flux Solar Furnace for Solar Fuel Production," KIER-A92408.
  12. Ulmer, S., Reinalter, W., Heller, P., Lupfert, E. and Martinez, D., 2002, "Beam Characterization and Improvement with a Flux Mapping System for Dish Concentrators," J. of Solar Engineering, Vol. 124, pp. 182-188. https://doi.org/10.1115/1.1464881

Cited by

  1. Concentration Error Assessment by Comparison of Solar Flux Measurement and Modeling vol.33, pp.3, 2013, https://doi.org/10.7836/kses.2013.33.3.082
  2. Effectiveness of a multi-channel volumetric air receiver for a solar power tower vol.49, pp.8, 2013, https://doi.org/10.1007/s00231-013-1164-5
  3. Experimental evaluation of the performance of solar receivers for compressed air vol.28, pp.11, 2014, https://doi.org/10.1007/s12206-014-1046-x
  4. Numerical Analysis of Heat Transfer in Multichannel Volumetric Solar Receivers vol.35, pp.12, 2011, https://doi.org/10.3795/KSME-B.2011.35.12.1383