DOI QR코드

DOI QR Code

Single-crystal Structure of Partially Dehydrated Partially Mg2+-exchanged Zeolite Y (FAU), |Mg30.5Na14(H2O)2.5|[Si117Al75O384]-FAU

  • Kim, Hu-Sik (Department of Applied Chemistry, Andong National University) ;
  • Ko, Seong-Oon (Department of Applied Chemistry, Andong National University) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University)
  • Received : 2011.07.14
  • Accepted : 2011.08.22
  • Published : 2011.10.20

Abstract

The single-crystal structure of partially dehydrated partially $Mg^{2+}$-exchanged zeolite Y, ${\mid}Mg{30.5}Na_{14}(H_2O)_{2.5}{\mid}$ [$Si_{117}Al_{75}O_{384}$]-FAU per unit cell, ${\alpha}$ = 25.5060(1) ${\AA}$, dehydrated at 723 K and $1{\times}10^{-4}$ Pa, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd$\bar{3}$ m at 100(1) K. The structure was refined using all intensities to the final error indices (using only the 561 reflections with $F_{\circ}$ > $4{\sigma}(F_{\circ})$) $R_1$ = 0.0377 (Based on F) and $R_2$ = 0.1032 (Based on $F^2$). About 30.5 $Mg^{2+}$ ions per unit cell are found at four different crystallographic sites. The 14 $Mg^{2+}$ ions occupy at site I at the center of double 6-ring (Mg-O = 2.231(3) ${\AA}$, O-Mg-O = $89.15(11)^{\circ}$ and $90.85(11)^{\circ}$). Four $Mg^{2+}$ ions are found at site I' in the sodalite cavity; the $Mg^{2+}$ ions are recessed 1.22 ${\AA}$ into the sodalite cavity from their 3-oxygen plane (Mg-O = 2.20(3) ${\AA}$ and O-Mg-O = $92.3(14)^{\circ}$). Site II' positions (opposite single 6-rings in the sodalite cage) are occupied by 2.5 $Mg^{2+}$ ions, each coordinated to an $H_2O$ molecule (Mg-O = 2.187(20) ${\AA}$ and O-Mg-O = $114.2(16)^{\circ}$). The 10 $Mg^{2+}$ ions are nearly three-quarters filled at site II in the supercage, being recessed 0.12 ${\AA}$ into the supercage (Mg-O = 2.123(4) A and O-Mg-O = $119.70(19)^{\circ}$). About 14 $Na^+$ ions per unit cell are found at one crystallographic site; the $Na^+$ ions are located at site II in the supercage (Na-O = 2.234(7) ${\AA}$ and O-Mg-O = $110.5(4)^{\circ}$).

Keywords

References

  1. Lim, W. T.; Seo, S. M.; Kim, K. H.; Lee, H. S.; Seff, K. J. Phys. Chem. C 2007, 111, 18294-18306. https://doi.org/10.1021/jp0742721
  2. Frising, T.; Leflaive, P. Micropor. Mesopor. Mater. 2008, 114, 27- 63. https://doi.org/10.1016/j.micromeso.2007.12.024
  3. Mirodatos, C.; Pichat, P.; Barthomeuf, D. J. Phys. Chem. 1976, 80, 1335-1342. https://doi.org/10.1021/j100553a016
  4. Anderson, A. A.; Shepelev, Yu. F.; Smolin, Yu. I. Zeolites 1990, 10, 32-37. https://doi.org/10.1016/0144-2449(90)90091-5
  5. Yeom, Y. H.; Jang, S. B.; Kim, Y.; Song, S. W.; Seff, K. J. Phys. Chem. B 1997, 101, 6914-6920. https://doi.org/10.1021/jp970907s
  6. Plevert, J.; Di Renzo, F.; Fajula, F. J. Phys. Chem. B 1997, 101, 10340-10346. https://doi.org/10.1021/jp9714330
  7. Feuerstein, M.; Lobo, R. F. Chem. Mater. 1998, 10, 2197-2204. https://doi.org/10.1021/cm980112d
  8. Lim, W. T.; Seo, S. M.; Wang, L. Z.; Lu, G. Q.; Heo, N. H.; Seff, K. Micropor. Mesopor. Mater. 2010, 129, 11-21. https://doi.org/10.1016/j.micromeso.2009.08.028
  9. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307- 326. https://doi.org/10.1016/S0076-6879(97)76066-X
  10. Bruker-AXS, XPREP, version 6.12, Program for the Automatic Space Group Determination; Bruker AXS Inc.; Madison, WI, 2001.
  11. Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures. University of Gottingen, Germany 1997.
  12. Seo, S. M.; Kim, G. H.; Lim, W. T. Bull. Korean Chem. Soc. 2010, 31, 2379-2382. https://doi.org/10.5012/bkcs.2010.31.8.2379
  13. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390-397. https://doi.org/10.1107/S0567739468000756
  14. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham: England, 1974; Vol. IV, p 71-98.
  15. Cromer, D. T. Acta Crystallogr. 1965, 18, 17-23. https://doi.org/10.1107/S0365110X6500004X
  16. International Tables for X-ray Crystallography; Kynoch Press: Birmingham: England, 1974; Vol. IV, pp 148-150.
  17. Loewenstein, W. Am. Mineral. 1954, 39, 92-96.
  18. Smith, J. V. Molecular Sieve Zeolites-I; Flanigen, E. M.; Sand, L. B., Eds.; Advances in Chemistry Series: American Chemical Society, Washington, D. C., 1971; vol. 101, pp 171-200.
  19. Yeom, Y. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 5314- 5318. https://doi.org/10.1021/jp970727i
  20. Song, M. K.; Kim, Y.; Seff, K. J. Phys. Chem. B 2003, 107, 3117- 2123. https://doi.org/10.1021/jp0215623
  21. Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, OH, 1989/1990; p F-187.

Cited by

  1. ]-FAU. vol.43, pp.5, 2012, https://doi.org/10.1002/chin.201205001
  2. Preparation and structural study of fully dehydrated, highly Mg2+-exchanged zeolite Y (FAU, Si/Al = 1.56) from undried methanol solution vol.21, pp.5, 2014, https://doi.org/10.1007/s10934-014-9812-9
  3. 방사성 핵종 제거를 위한 천연 제올라이트 특성 연구 vol.27, pp.1, 2011, https://doi.org/10.9727/jmsk.2014.27.1.41
  4. 제올라이트 광산개발을 위한 천연 제올라이트의 특성 분석 및 중금속 이온 흡착 특성 연구 vol.28, pp.4, 2015, https://doi.org/10.9727/jmsk.2015.28.4.299