DOI QR코드

DOI QR Code

INVESTIGATION ON MATERIAL DEGRADATION OF ALLOY 617 IN HIGH TEMPERATURE IMPURE HELIUM COOLANT

  • Kim, Dong-Jin (Nuclear Materials Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Gyeong-Geun (Nuclear Materials Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jeong, Su-Jin (Nuclear Materials Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Woo-Gon (Nuclear Materials Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Park, Ji-Yeon (Nuclear Materials Division, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2011.02.28
  • Accepted : 2011.04.11
  • Published : 2011.10.31

Abstract

The corrosion of materials exposed to high temperature helium in a very high temperature reactor is caused by interaction with the impurities in the helium. This interaction then induces high temperature mechanical deterioration. By considering the effect of the impurity concentration on material corrosion, a long-term coolant chemistry guideline can be determined for the range of impurity concentration at which the material is stable for a long time. In this work, surface reactions were investigated by analyzing the thermodynamics and the experimental results for Alloy 617 exposed to controlled impure helium at $950^{\circ}C$. Moreover, the surfaces were examined for the Alloy 617 crept in air and in uncontrolled helium, which was explained by possible surface reactions.

Keywords

References

  1. C. Cabet, F. Rouillard, J. Nuclear Materials, 392 (2009) 235. https://doi.org/10.1016/j.jnucmat.2009.03.029
  2. K.G.E. Brenner, L.W. Graham, Nucl. Technol. 66 (1984) 404. https://doi.org/10.13182/NT84-A33443
  3. W.J. Quadakkers, Werkstoffe und Korrosion, 36 (1985) 335. https://doi.org/10.1002/maco.19850360802
  4. M. R. Warren, High Temperature Technology, 4 (1986) 119. https://doi.org/10.1080/02619180.1986.11753327
  5. C. Cabet, J. Chapovaloff, F. Rouillard, G. Girardin, D. Kaczorowski, K. Wolski, M. Pijolat, J. Nuclear Materials, 375 (2008) 173. https://doi.org/10.1016/j.jnucmat.2007.11.006
  6. HSC Chemistry, 6.0.
  7. W. Ren, R. Swimdeman, J. Pressure Vessel Technology, 131 (2009) 024002-1. https://doi.org/10.1115/1.2967885
  8. T. S. Jo, J. H. Lim, Y. D. Kim, J. Nuclear Materials, 406 (2010) 360. https://doi.org/10.1016/j.jnucmat.2010.09.027
  9. T. S. Jo, S. Lee, G.-S. Kim, S.-H. Kim, Y. D. Kim, Kor. J. Mater. Res., 17 (2007) 268. https://doi.org/10.3740/MRSK.2007.17.5.268
  10. W. G. Kim, S. N. Yin, G.-G. Lee, Y. W. Kim, p. 243, proceeding of Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, 29-30 October, 2009.
  11. S. Kihara, J. B. Newkirk, A. Ohtomo, Y. Saiga, Metallurgical Transactions A, 11A (1980) 1019.

Cited by

  1. High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor vol.12, pp.2, 2013, https://doi.org/10.14773/cst.2013.12.2.102
  2. Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation vol.12, pp.3, 2013, https://doi.org/10.14773/cst.2013.12.3.132
  3. Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy vol.13, pp.5, 2014, https://doi.org/10.14773/cst.2014.13.5.178
  4. Parametric Study on the Tensile Properties of Ni-Based Alloy for a VHTR vol.46, pp.1, 2015, https://doi.org/10.1007/s11661-014-2357-3