DOI QR코드

DOI QR Code

A Scheme for Computing Primary Fields in Modeling of Marine Controlled-Source Electromagnetic Surveys

해양전자탐사 모델링을 위한 1차장 계산법

  • Kim, Hee-Joon (Department of Energy Resources Engineering, Pukyong National University)
  • 김희준 (부경대학교 에너지자원공학과)
  • Received : 2011.05.31
  • Accepted : 2011.06.20
  • Published : 2011.08.31

Abstract

In marine controlled-source electromagnetic (CSEM) modeling, it may be difficult to evaluate primary fields accurately using conventional linear filters because they decay very rapidly with distance. However, since there exists a closed-form solution to the Hankel transform in TM mode for a homogeneous half space, we can assess the accuracy of linear filters for evaluating the Hankel transform. As a result, only nine out of 36 source-receiver pairs show that EM fields decrease linearly in semi-log scale with an increase of source-receiver distance, while EM fields are either 0 or not reduced significantly due to an effect of the air layer. There also exist closed-form solutions for the nine pairs, and the others can be evaluated accurately with a relatively short filter. This paper proposes a method which uses closed-form solutions for TM-mode Hankel transforms and a filter with 61 coefficients for TE-mode ones.

해양전자탐사의 모델링에서 1차장은 송수신 간격이 넓어지면 크게 감소하기 때문에 기존의 선형필터로서는 정확한 계산이 어려워진다. 그러나 균질 반무한공간의 경우 TM 모드의 Hankel 변환에는 해석해가 존재하므로 이를 이용하면 Hankel 변환의 계산을 위한 선형필터의 정확도를 검토할 수 있다. 그 결과 송수신 간격이 커짐에 따라서 전자기장이 반대수 그래프에서 선형적으로 감소하는 경우는 총 36가지 송수신 조합 중 9가지 뿐이며, 나머지 조합에서는 전자기장이 0 이거나 아니면 공기층의 영향을 받아 전자기장의 감소가 크지 않다. 다행히 이 9가지 조합에는 해석해가 존재하고, 나머지 조합에서는 전자기장의 극단적인 감소가 나타나지 않으므로 비교적 길이가 짧은 필터로도 Hankel 변환의 정확한 계산이 가능하다. 이상의 결과를 토대로 이 논문에서는 균질 반무한공간 모델에 대한 전자기장 계산법으로서 TM 모드의 Hankel 변환에는 해석해를 쓰고 TE 모드 계산에는 그 계수가 61개인 필터를 쓰는 방식을 제안한다.

Keywords

References

  1. 김희준, 최지향, 한누리, 송윤호, 이기하, 2009, 전자탐사 자료 해석을 위한 1차장 계산, 물리탐사, 12, 361-366.
  2. Anderson, W. L., 1982, Fast Hankel transforms using related and lagged convolutions, ACM Trans. Math. Software, 8, 344-368. https://doi.org/10.1145/356012.356014
  3. Chave, A. D., Constable, S., and Edwards, N., 1991, Electrical exploration methods for seafloor, in Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics, Soc. Expl. Geophys., Vol II, 931-966.
  4. Chave, A. D., and Cox, C. S., 1982, Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans, 1. Forward problem and model study, J. Geophys. Res., 87, 5327-5338. https://doi.org/10.1029/JB087iB07p05327
  5. Constable, S., and Cox, C. S., 1996, Marine controlled source electromagnetic sounding: 2. The PEGASUS experiment, J. Geophys. Res., 101, 5519-5530. https://doi.org/10.1029/95JB03738
  6. Constable, S., and Srnka, L. J., 2007, An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration, Geophysics, 72, WA3-WA12. https://doi.org/10.1190/1.2432483
  7. Constable, S., and Weiss, C. J., 2006, Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling, Geophysics, 71, G43-G51. https://doi.org/10.1190/1.2187748
  8. Eidesmo, T., Ellingsrud, S., MacGregor, L. M., Constable, S., Sinha, M. C., Johanson, S., Kong, F. N., and Westerdahl, H., 2002, Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas, First Break, 20, 144-152.
  9. Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M. C., MacGregor, L. M., and Constable, S., 2002, Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola, The Leading Edge, 21, 972-982. https://doi.org/10.1190/1.1518433
  10. Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium, Geophys. Prosp., 55, 83-89. https://doi.org/10.1111/j.1365-2478.2006.00585.x
  11. Kowalczyk, P., 2009, The gophysical exploration of SMS deposits - a case study of the Solwara 1 submarine massive sulfide deposit, Proc. 9th SEGJ Int. Symp., 42.
  12. MacGregor, L. M., Constable, S., and Sinha, M. C., 1998, The RAMESSES experiment III: Controlled source electromagnetic sounding of the Reykjanes Ridge at $57^{\circ}45^{\prime}$, J. Geophys. Res., 135, 773-789.
  13. MacGregor, L. M., Constable, S., and Sinha, M. C., 2001, Electrical resistivity structures of the Valu Fa Ridge, Lau basin, from marine controlled source electromagnetic sounding, Geophys. J. Int., 146, 217-236. https://doi.org/10.1046/j.1365-246X.2001.00440.x
  14. Newman, G. A., and Alumbaugh, D. L., 1995, Frequencydomain modeling of airborne electromagnetic responses using staggered finite differences, Geophys. Prosp., 43, 1021-1042. https://doi.org/10.1111/j.1365-2478.1995.tb00294.x
  15. Raiche, A., 1999, A flow-through Hankel transform technique for rapid, accurate Green's function computation, Radio Science, 34, 549-555. https://doi.org/10.1029/1998RS900037
  16. Song, Y., Choi, J., and Kim, H. J., 2009, A sensitivity analysis of marine small-loop EM survey, Proc. 9th SEGJ Int. Symp., 41.
  17. Weiss, C. J., and Constable, S., 2006, Mapping thin resistors and hydrocarbons with marine EM methods, Part II-Modeling and analysis in 3D, Geophysics, 71, G321-G332. https://doi.org/10.1190/1.2356908