DOI QR코드

DOI QR Code

Detection of Megalocytivirus in shellfish using PCR with various DNA extraction methods

다양한 PCR용 DNA 추출법에 의한 패류 내 Megalocytivirus의 검출

  • Kim, Jin-Woo (Aquatic life disease control division, National Fisheries Research and Development Institute) ;
  • Cho, Mi-Young (Aquatic life disease control division, National Fisheries Research and Development Institute) ;
  • Jin, Ji-Woong (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Ki-Hong (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Jeong, Hyun-Do (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Kwang-Il (Department of Aquatic Life Medicine, Pukyong National University)
  • 김진우 (국립수산과학원 수산생물방역과) ;
  • 조미영 (국립수산과학원 수산생물방역과) ;
  • 진지웅 (부경대학교 수산생명의학과) ;
  • 김기홍 (부경대학교 수산생명의학과) ;
  • 정현도 (부경대학교 수산생명의학과) ;
  • 김광일 (부경대학교 수산생명의학과)
  • Received : 2011.07.04
  • Accepted : 2011.08.17
  • Published : 2011.08.31

Abstract

In analysis of DNA viruses from the contaminated shellfish using PCR, preparation method of template DNA is an important factor to get enough copy number of viruses. In this study, we evaluated the efficiency of PCR template of Megalocytivirus (sT50mg-D) DNA obtained from 50 mg digestive gland homogenate of oyster using commercial method, and compared with that obtained from 5 g of the same tissues (T5g-D) after PEG precipitation procedures of virus. Both templates DNA suspended in the same volume of distilled water showed positive results by primary PCR with 35 cycles, and the presence of Megalocytivirus was confirmed in oysters collected from cultured farms in Korea. Moreover, PCR with sT50mg-D allowed us to discriminate the contaminated oyster individually, that can not be done in PCR with T5g-D prepared from the mixture of three different individual oyster to get 5 g digestive gland homogenate. In quantitative analysis with real time PCR, Megalocytivirus concentrations in 50 ${\mu}l$ templates prepared using 0.5~50 mg of one positive sample were appeared in the range 6.14E+00~1.2E+02/${\mu}l$. We were not able to get positive result using template DNA contained less than 6.14E+00 copies. Consequently, 2-step PCR performed with DNA extracts from oyster homogenate of small amount (sT50mg-D) i) was enough to detect the contaminated Megalocytivirus in shellfish, ii) allowed us to do the analysis for individual shellfish rather than mixture of several shellfish and iii) showed the presence of Megalocytivirus in oyster from Korea.

패류 내에 오염되어 있는 바이러스의 검출에 있어서 정성 정량적 분석이 기능하며 신속하고 간편한 방법의 개발을 이루고자 하였다. 5g의 굴 중장선 조직을 Glycine buffer 및 PEG 8000 용액을 사용하여 제조한 농축 시료 (T5g-D)와 50mg의 굴 중장선 조직으로부터 직접적으로 제조한 시료(sT5Omg-D)를 대상으로 2-step PCR을 실시하여 검출감도를 비교하였다. 동일한 1 ${\mu}l$의 DNA template T5g-D와 sT50mg-D를 사용하였을 때, 35cycles의 1-step PCR에서 양성의 결과를 얻을 수 있었다. 인위적으로 sT50mg-D 혼합 시료를 사용하여 2-step PCR (35cycles)을 실시하였을 때 T5g-D를 사용한 것과 비교하여 뚜렷한 차이를 나타내지 않았다. 또한 megalocytivirus에 오염된 양성시료 0.5~50mg을 사용하여 조제한 각각 $50{\mu}l$의 template DNA 1 ${\mu}l$를 사용하여 qPCR을 하였을 때 6.14E+00~1.2E+02/${\mu}l$의 농도를 함유하고 있는 것으로 나타났다. 조제한 template DNA에 6.14E+00 copies/${\mu}l$ 이하의 농도가 있을 때는 qPCR에서 positive의 결과를 얻을 수 없었다. 결론적으로 패류 내 mega1ocytivirus의 오염 유무 판단을 위한 2-step PCR 및 qPCR에서 50mg의 중장선을 사용하는 것은 i) 굴의 조직으로부터 오염된 megalocytivirus의 정성 및 정량을 위한 최소 검출 한계에 벼하여 충분한 양이었으며 ii) 개체별 분석이 가능하다는 장점이 있었으며 iii) 이를 토대로 국내에서 서식하고 있는 굴에서 megalocytivirus의 오염을 확인할 수 있었다.

Keywords

References

  1. Atmar, R.L., Neill, F.H., Romalde, J.L., Le, Guyader, F., Woodley, C.M., Metcalf, T.G. and Estes, M.K.: Detection of Norwalk virus and hepatitis A viruses in shellfish tissues with the PCR. Applied and Environmental Microbiology, 61: 3014-30189, 1995.
  2. De Medici D., Croci L., Di Pasquale S., Fiore A., Toti L.: Detecting the presence of infectious hepatitis A virus in molluscs positive to RT-nested-PCR. Lettesr in Applied Microbiology, 33: 362-366, 2001. https://doi.org/10.1046/j.1472-765X.2001.01018.x
  3. Formiga-Cruz M., Tofino-Quesada G., Bofill-Mas S., Lees D.N., Henshilwood K., Allard A.K., Conden-Hansson A.C., Hernroth B.E., Vantarakis A., Tsibouxi A., Papapetropoulou M., Furones M.D., Girones R.: Distribution of human virus contamination in shellfish from different growing areas in Greece, Spain, Sweden, and the United Kingdom. Applied and Environmental Microbiology, 68(12): 5990- 5998, 2002. https://doi.org/10.1128/AEM.68.12.5990-5998.2002
  4. Gerba, C.P. and Goyal, S.M.: Detection and occurrence of enteric viruses in shellfish: A review. Journal of Food Protection., 41: 743-754, 1978.
  5. Goyan, S.M., Gerba, C.P. and Melnick, J.L.: Human entero viruses in oysters and their overlaying waters. Applied and Environmental Microbiology, 37: 572-575, 1979.
  6. Jeong J.B., Jun L.J., Yoo M.H., Kim M.S., Komisar J.L., Jeong H.D.: Chariterization of the DNA nucleotide sequences in the genome of red sea bream iridoviruses isolated in Korea. Aquaculture, 220: 119-133, 2003. https://doi.org/10.1016/S0044-8486(02)00538-0
  7. Jun L.J., Jeong J.B., Kim J.H., Nam J.H., Shin K.W., Kim J.K., Kang J.H., Jeong H.D.: Influence of temperature shifts on the onset and development of red sea bream iridoviral disease in rock bream Oplegnathus fasciatus. Diseases of Aquatic Organism., 84: 201-208, 2009. https://doi.org/10.3354/dao02041
  8. Kitamura S., Tomaru Y., Kawabata Z., Suzukii S.: Detection of marine birnavirus in the Japanese pearl oyster Pinctada fucata and seawater from different depths. Diseases of Aquatic Organism., 50: 211-217, 2002. https://doi.org/10.3354/dao050211
  9. Schikorski D., Faury N., Pepin J.F., Saulnier D., Tourbiez D., Renault T.: Experimental ostreid herpesvirus 1 infection of the Pacific oyster Crassostrea gigas: kinetics of virus DNA detection by q-PCR in seawater and in oyster samples. Virus Reserch, 155(1): 28-34, 2011. https://doi.org/10.1016/j.virusres.2010.07.031
  10. Suzuki, S. and Nojima. M.: Detection of a marine birnavirus in wild molluscan shellfish species from Japan. Fish Pathology, 34: 121-125, 1999. https://doi.org/10.3147/jsfp.34.121
  11. Vazquez-Boucard C., Alvarez-Ruiz P., Escobedo-Fregoso C., Anguiano-Vega G., Duran-Avelar Mde J., Pinto V.S., Escobedo-Bonilla C.M.: Detection of white spot syndrome virus (WSSV) in the Pacific oyster Crassostrea gigas. Journal of Invertebrate Pathology, 104: 245-247, 2010. https://doi.org/10.1016/j.jip.2010.04.004

Cited by

  1. Detection and Genetic Differentiation of Megalocytiviruses in Shellfish, via High-Resolution Melting (HRM) Analysis vol.47, pp.3, 2014, https://doi.org/10.5657/KFAS.2014.0241
  2. Characterization of Asymptomatic Megalocytivirus Infection in farmed Rock Fish (Sebastes schlegeli) in Korea vol.27, pp.4, 2015, https://doi.org/10.13000/JFMSE.2015.27.4.1184
  3. Surveillance of aquatic animal viruses in seawater and shellfish in Korea vol.461, 2016, https://doi.org/10.1016/j.aquaculture.2016.03.053
  4. Cloning and expression analysis of innate immune genes from red sea bream to assess different susceptibility to megalocytivirus infection vol.40, pp.4, 2017, https://doi.org/10.1111/jfd.12537
  5. Detection of Fish Pathogenic Viruses in Seawater Using Negatively Charged Membranes vol.46, pp.1, 2013, https://doi.org/10.5657/KFAS.2013.0046
  6. Dynamics of megalocytivirus transmission between bivalve molluscs and rock bream Oplegnathus fasciatus vol.428-429, 2014, https://doi.org/10.1016/j.aquaculture.2014.02.010
  7. Development of a high-dose vaccine formulation for prevention of megalocytivirus infection in rock bream (Oplegnathus fasciatus) vol.38, pp.51, 2011, https://doi.org/10.1016/j.vaccine.2020.11.001