Participation of Peripheral P2X Receptors in Orofacial Inflammatory Nociception in Rats

  • Park, Min-Kyoung (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Song, Hyun-Chul (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Yang, Kui-Ye (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ju, Jin-Sook (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ahn, Dong-Kuk (Department of Oral Physiology, School of Dentistry, Kyungpook National University)
  • Received : 2011.06.20
  • Accepted : 2011.09.02
  • Published : 2011.09.30

Abstract

The present study investigated the role of peripheral P2X receptors in inflammatory pain transmission in the orofacial area in rats. Experiments were carried out on male Sprague-Dawley rats weighing 220 to 280 g. Formalin (5%, 50 ${\mu}L$) and complete Freund's adjuvant (CFA, 25 ${\mu}L$) was applied subcutaneously to the vibrissa pad to produce inflammatory pain. TNP-ATP, a $P2X_{2,2/3,4}$ receptor antagonist, or OX-ATP, a $P2X_7$ receptor antagonist, was then injected subcutaneously at 20 minutes prior to formalin injection. One of the antagonists was administered subcutaneously at three days after CFA injection. The subcutaneous injection of formalin produced a biphasic nociceptive behavioral response. Subcutaneous pretreatment with TNP-ATP (80, 160 or 240 ${\mu}g$) significantly suppressed the number of scratches in the second phase produced by formalin injection. The subcutaneous injection of 50 ${\mu}g$ of OX-ATP also produced significant antinociceptive effects in the second phase. Subcutaneous injections of CFA produced increases in mechanical and thermal hypersensitivity. Both TNP-ATP (480 ${\mu}g$) and OX-ATP (100 ${\mu}g$) produced an attenuation of mechanical hypersensitivity. However, no change was observed in thermal hypersensitivity after the injection of either chemical. These results suggest that the blockade of peripheral P2X receptors is a potential therapeutic approach to the onset of inflammatory pain in the orofacial area.

Keywords

References

  1. Abbracchio MP, Burnstock G. Purinergic signalling: pathophysiological roles. Jpn J Pharmacol. 1998;78:113-45. https://doi.org/10.1254/jjp.78.113
  2. Ahn DK, Chae JM, Choi HS, Kyung HM, Kwon OW, Park HS, Youn DH, Bae YC. Central cyclooxygenase inhibitors reduced IL-1beta-induced hyperalgesia in temporomandibular joint of freely moving rats. Pain. 2005;117:204-13. https://doi.org/10.1016/j.pain.2005.06.009
  3. Alavi AM, Dubyak GR, Burnstock G. Immunohistochemical evidence for ATP receptors in human dental pulp. J Dent Res. 2001;80:476-83. https://doi.org/10.1177/00220345010800021501
  4. Burnstock G, Campbell G, Satchell D, Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970;40:668-88. https://doi.org/10.1111/j.1476-5381.1970.tb10646.x
  5. Burnstock G. Knight GE. Cellular distribution and functions of P2 receptor different systems. Int Rev Cytol. 2004;240:31- 304.
  6. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87:659-797. https://doi.org/10.1152/physrev.00043.2006
  7. Cairns BE, Sessle BJ, Hu JW. Evidence that excitatory amino acid receptors within the temporomandibular joint region are involved in the reflex activation of the jaw muscles. J Neurosci. 1998;18:8056-64.
  8. Chen Y, Zhang X, Wang C, Li G, Gu Y, Huang LY. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci USA. 2008;105:16773-8. https://doi.org/10.1073/pnas.0801793105
  9. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain. 2005;114:386-96. https://doi.org/10.1016/j.pain.2005.01.002
  10. Choi HS, Lee HJ, Jung CY, Ju JS, Park JS, Ahn DK. Central cyclooxygenase-2 participates in interleukin-1 beta-induced hyperalgesia in the orofacial formalin test of freely moving rats. Neurosci Lett. 2003a;352:187-90. https://doi.org/10.1016/j.neulet.2003.08.065
  11. Choi HS, Ju JS, Lee HJ, Kim BC, Park JS, Ahn DK. Effects of intracisternal injection of interleukin-6 on nociceptive jaw opening reflex and orofacial formalin test in freely moving rats. Brain Res Bull. 2003b;59:365-70. https://doi.org/10.1016/S0361-9230(02)00931-0
  12. Choi HS, Lee HJ, Jung CY, Ju JS, Park JS, Ahn DK. Central cyclooxygenase-2 participates in interleukin-1 beta-induced hyperalgesia in the orofacial formalin test of freely moving rats. Neurosci Lett. 2003c;352:187-90. https://doi.org/10.1016/j.neulet.2003.08.065
  13. Clavelou P, Pajot J, Dallel R, Raboisson P. Application of the formalin test to the study of orofacial pain in the rat. Neurosci Lett. 1989;103:349- 53. https://doi.org/10.1016/0304-3940(89)90125-0
  14. Collier HO, James GW, Schneider C. Antagonism by aspirin and fenamates of bronchoconstriction and nociception induced by adenosine-5'- triphosphate. Nature. 1966;212:411-2. https://doi.org/10.1038/212411a0
  15. Dowd E, McQueen DS, Chessell IP, Humphrey PP. P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol. 1998;125: 341-6. https://doi.org/10.1038/sj.bjp.0702080
  16. Drury AN, Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929;68:213-37. https://doi.org/10.1113/jphysiol.1929.sp002608
  17. Holton P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959;145:494-504. https://doi.org/10.1113/jphysiol.1959.sp006157
  18. Honore P, Donnelly-Roberts D, Namovic M, Zhong C, Wade C, Chandran P, Zhu C, Carroll W, Perez-Medrano A, Iwakura Y, Jarvis MF. The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1alphabeta knockout mice. Behav Brain Res. 2009;204:77-81. https://doi.org/10.1016/j.bbr.2009.05.018
  19. Ichikawa H, Fukunaga T, Jin HW, Fujita M, Takano-Yamamoto T, Sugimoto T. VR1-, VRL-1- and P2X3 receptor-immunoreactive innervation of the rat temporomandibular joint. Brain Res. 2004;1008:131-6. https://doi.org/10.1016/j.brainres.2004.02.029
  20. Iwata K, Tashiro A, Tsuboi Y, Imai T, Sumino R, Morimoto T, Dubner R, Ren K. Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation. J Neurophysiol. 1999;82:1244-53. https://doi.org/10.1152/jn.1999.82.3.1244
  21. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA. 2002;99:17179-84. https://doi.org/10.1073/pnas.252537299
  22. Jung CY, Lee SY, Choi HS, Lim EJ, Lee MK, Yang GY, Han SR, Youn DH, Ahn DK. Participation of peripheral group I and II metabotropic glutamate receptors in the development or maintenance of IL-1beta-induced mechanical allodynia in the orofacial area of conscious rats. Neurosci Lett. 2006;409:173-8. https://doi.org/10.1016/j.neulet.2006.09.043
  23. Kim SH, Cho YK, Chung KM, Kim, KN. Purinergic Receptors Play Roles in Secretion of Rat von Ebner Salivary Gland. IJOB. 2006;31:141-148.
  24. Kim YS, Paik SK, Cho YS, Shin HS, Bae JY, Moritani M, Yoshida A, Ahn DK, Valtschanoff J, Hwang SJ, Moon C, Bae YC. Expression of P2X3 receptor in the trigeminal sensory nuclei of the rat. J Comp Neurol. 2008;506:627-39 https://doi.org/10.1002/cne.21544
  25. Lee HJ, Choi HS, Jung CY, Ju JS, Kim SK, Bae YC, Ahn DK. Intracisternal NMDA produces analgesia in the orofacial formalin test of freely moving rats. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:497-503. https://doi.org/10.1016/j.pnpbp.2004.01.001
  26. Lee S, Zhao YQ, Ribeiro-da-Silva A, Zhang J. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation. Mol Pain. 2010;6:79. https://doi.org/10.1186/1744-8069-6-79
  27. Li HY, Oh SB, Kim JS. Pharmacological and electrophysiological characterization of rat P2X currents. IJOB 2008;33:1-5..
  28. McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR, Jarvis MF. Effects of A- 317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol. 2003;140:1381-8. https://doi.org/10.1038/sj.bjp.0705574
  29. Norenberg W, Illes P. Neuronal P2X receptors: localisation and functional properties. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:324-39. https://doi.org/10.1007/s002100000311
  30. Oliveira MC, Pelegrini-da-Silva A, Tambeli CH, Parada CA. Peripheral mechanisms underlying the essential role of P2X3,2/3 receptors in the development of inflammatory hyperalgesia. Pain. 2009;141:127-34. https://doi.org/10.1016/j.pain.2008.10.024
  31. Ren K, Dubner R. An inflammtion/hyperalgesia model for the study of orofacial pain. J Dent Res. 1996;75:217.
  32. Seo HS, Roh DH, Kwon SG, Yoon SY, Kang SY, Moon JY, Choi SR, Beitz AJ, Lee JH. Acidic pH facilitates peripheral ${\alpha}{\beta}meATP$-mediated nociception in rats: differential roles of P2X, P2Y, ASIC and TRPV1 receptors in ATP-induced mechanical allodynia and thermal hyperalgesia. Neuropharmacology. 2011;60:580-6. https://doi.org/10.1016/j.neuropharm.2010.12.009
  33. Shaver SR. P2Y receptors: biological advances and therapeutic opportunities. Curr Opin Drug Discov Devel. 2001;4:665-70
  34. Shinoda M, Ozaki N, Asai H, Nagamine K, Sugiura Y. Changes in P2X3 receptor expression in the trigeminal ganglion following monoarthritis of the temporomandibular joint in rats. Pain. 2005;116:42-51. https://doi.org/10.1016/j.pain.2005.03.042
  35. Staikopoulos V, Sessle BJ, Furness JB, Jennings EA. Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience. 2007;144:208-16. https://doi.org/10.1016/j.neuroscience.2006.09.035
  36. Tashiro A, Okamoto K, Milam SB, Bereiter DA. Differential effects of estradiol on encoding properties of TMJ units in laminae I and V at the spinomedullary junction in female rats. J Neurophysiol. 2007;98:3242-53. https://doi.org/10.1152/jn.00677.2007
  37. Teixeira JM, Oliveira MC, Nociti FH Jr, Clemente-Napimoga JT, Pelegrini-da-Silva A, Parada CA, Tambeli CH. Involvement of temporomandibular joint P2X3 and P2X2/3 receptors in carrageenan-induced inflammatory hyperalgesia in rats. Eur J Pharmacol. 2010;645:79-85. https://doi.org/10.1016/j.ejphar.2010.06.008
  38. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992;51:5-17. https://doi.org/10.1016/0304-3959(92)90003-T
  39. Volonté C, Amadio S, Cavaliere F, D'Ambrosi N, Vacca F, Bernardi G. Extracellular ATP and neurodegeneration. Curr Drug Targets CNS Neurol Disord. 2003;2:403-12. https://doi.org/10.2174/1568007033482643
  40. Yang GY, Lee JH, Ahn DK. Participation of NMDA and non NMDA glutamate receptors in the formalin-induced inflammatory temporomandibular joint noception. Interantional Journal of Oral Biology. 2007;32:59-65.
  41. Zhou Q, Imbe H, Dubner R, Ren K. Persistent Fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: implications for persistent orofacial pain. J Comp Neurol. 1999;412:276-91. https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2<276::AID-CNE7>3.0.CO;2-9
  42. Ziganshin AU, Ziganshina LE, Burnstock G. P2 receptors: theoretical background for the use in clinical practice. Bull Exp Biol Med. 2002;134:313-7. https://doi.org/10.1023/A:1021921824876