DOI QR코드

DOI QR Code

Full Scale Structural Testing of Small Wind Turbine Composite Blade

풍력발전용 소형복합재 블레이드의 실규모 구조시험

  • Kim, Hong-Kwan (School of Mechanical Engineering, College of Engineering, Kunsan Nat'l Univ.) ;
  • Kim, Tae-Seong (Production Engineering Center, CAE Technology Group, LS Cable Ltd.) ;
  • Lee, Jang-Ho (Break-through technology Center for Urban Wind Energy System, Kunsan Nat'l Univ.) ;
  • Moon, Byung-Young (Dept. of Naval Architecture, Kunsan Nat'l Univ.) ;
  • Kang, Ki-Weon (Break-through technology Center for Urban Wind Energy System, Kunsan Nat'l Univ.)
  • 김홍관 (군산대학교 기계공학부) ;
  • 김태성 ;
  • 이장호 (군산대학교 도시형풍력발전원천기술연구센터) ;
  • 문병영 (군산대학교 조선공학과) ;
  • 강기원 (군산대학교 도시형풍력발전원천기술연구센터)
  • Received : 2011.04.18
  • Accepted : 2011.09.08
  • Published : 2011.11.01

Abstract

In this paper, the structural design for composite blade was performed and full scale structural test was conducted to verify the structural design and integrity of composite blade. Firstly, FE analysis was performed using commercial software ABAQUS under conditions of rated wind speed and Case H in IEC 61400-2. Lay-up sequence and ply thickness were designed based on FE results. And to verify the structural design, full scale structural test was conducted according to IEC 61400-2 under identical loading conditions of FE analysis. Finally, the force-deflection and local strain behavior of composite blade were evaluated.

소형풍력발전시스템의 복합재 블레이드에 대한 실규모 구조시험 및 이를 모사한 구조해석을 통하여 설계 타당성을 검증하였다. 먼저 IEC 61400-2 에 규정된 설계 요구조건의 만족을 위하여 정격 풍속 및 IEC 61400-2 Case H 의 최악 조건에 대한 구조해석을 수행하고 이를 통하여 적층 순서 및 적층 두께를 결정하였다. 또한 이러한 구조해석의 타당성 검증을 위하여 IEC 61400-23 에 따라 구조해석과 동일한 하중조건에서의 실규모 구조시험을 실시하였다. 이러한 실규모 구조시험을 통한 구한 블레이드의 하중-변위 선도 및 표면의 변형률 특성을 이용하여 블레이드의 구조적 안전성을 평가하였다.

Keywords

References

  1. Dong, K.M., Jung, S.N. and Shin, C., 2001 "Perfomance Prediction and Structural Analysis of Counter-Rotating Wind Turbine Blade," Proceeding of The Korean Society for Aeronautical & Space Sciences, 2001, Autumn, pp.708-711
  2. Kang, C.S., Kim, D.M., and Jun, W.J, 1992, "Structural Design of FRP Wind Turbine Blade," Joint Symposium of the Korean Society of Mechanical Engineers, Vol.16, No 1, pp. 162-174
  3. Lee., C.H, Park, J.M., Kim, T.W. and Park, J.S., 2002, "Structural Design and Analysis of a Composite Wind Turbine Blade," Joint Symposium of the Korean Society of Mechanical Engineers, pp. 558-562
  4. Cotrell, J., Musisal, W. and Hughes, S., 2006, "Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America," Technical Report NREL/TP-500- 38044,
  5. International Standard, IEC 61400-2, 2006, "Design Requirements for Small Wind Turbines," Second edition
  6. ABAQUS Version 6.8-1, Dassault Systems Simulia.Inc., 2008
  7. Kim, H.K., Lee, J.H., Jang, S.E. and Kang, K.W., 2010, "Structural Analysis and Testing of 1.5kW Class Wind Turbine Blade," Journal of Korean Fluid Machinery Association, Vol. 13, No. 4, pp. 51-57 https://doi.org/10.5293/KFMA.2010.13.4.051
  8. PROPID Version 5.1, University of Illinois at Urbana-Champaign, 2007

Cited by

  1. Structural Integrity of Small Wind Turbine Composite Blade Using Structural Test and Finite Element Analysis vol.36, pp.9, 2012, https://doi.org/10.3795/KSME-A.2012.36.9.1087
  2. Performance Prediction of Wind Power Turbine by CFD Analysis vol.37, pp.4, 2013, https://doi.org/10.3795/KSME-B.2013.37.4.423