DOI QR코드

DOI QR Code

Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS

MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조

  • Jo, Tae Sun (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Se Hoon (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 조태선 (한양대학교 신소재공학과) ;
  • 김세훈 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Received : 2010.10.24
  • Published : 2011.02.25

Abstract

In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. P. Garg, S. J. Park, and R. M. German, Int. J. Refract: Met. Hard. Mater. 25, 16 (2007). https://doi.org/10.1016/j.ijrmhm.2005.10.014
  2. T. S. Srivatsan, B. G. Ravi, A. S. Naruka, L. Riester, M. Petraroli, and T. S. Sudarshan, Powder Technol. 114, 136 (2001). https://doi.org/10.1016/S0032-5910(00)00285-0
  3. J. A. Shields Jr and P. Lipetzky, J. Mine. 52, 37 (2000).
  4. N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, Sol. Energy Mater. Sol. Cells 67, 209 (2001). https://doi.org/10.1016/S0927-0248(00)00283-X
  5. J.-P. HeinB, F. Handel, T. Meyer, and R. Wurz, Plasma Process. Polym. 6, S29 (2009). https://doi.org/10.1002/ppap.200930203
  6. Y. Kamikawa-Shimizu, S. Shimada, M. Watanabe, A. Yamada, K. Sakurai, S. Ishizuka, H. Komaki, K. Matsubara, H. Shibata, H. Tampo, K. Maejima, and S. Niki, Phys. Status. Solidi. A 206, 1063 (2009). https://doi.org/10.1002/pssa.200881200
  7. G. Gordillo, F. Mesa, and C. Calderon, Braz. J. Phys. 36(3B), 982 (2006). https://doi.org/10.1590/S0103-97332006000600049
  8. W. V. Schulmeyer and H. M. Ortner, Int. J. Refract: Met. Hard. Mater. 20, 261 (2002). https://doi.org/10.1016/S0263-4368(02)00029-X
  9. G. S. Kim, Y. J. Lee, D. G. Kim, and Y. D. Kim, J. Alloys Compd. 454, 327 (2008). https://doi.org/10.1016/j.jallcom.2006.12.039
  10. H. Mostaghaci and R. J. Brook, Trans, J. Br. Ceram. Soc. 82, 167 (1983).
  11. J. Zheng and P. E. Johnson, J. Amer. Ceram. Soc. 76, 2760 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb04013.x
  12. Y. J. Lee, Y. I. Seo, S. H. Kim, D. G. Kim, and Y. D. Kim, Chem. Vapor Depos. 15, 199 (2009). https://doi.org/10.1002/cvde.200906738
  13. Y. J. Lee, W. T. Nichols, D.-G. Kim, and Y. D. Kim, J. Phys. D: Appl. Phys. 42, 115419 (2009). https://doi.org/10.1088/0022-3727/42/11/115419
  14. Y. J. Lee, Y. I. Seo, S. H. Kim, D. G. Kim, and Y. D. Kim, Appl. Phys. A 97, 237 (2009). https://doi.org/10.1007/s00339-009-5209-z
  15. S.-S. Jung, E.-S. Yoon, and J.-S. Lee, J. Kor. Inst. Met. & Mater. 47, 597 (2009).
  16. Werner V. Schulmeyer and Hugo M. Ortner, J. Refrect. Met. Hard Mater. 20, 261 (2002). https://doi.org/10.1016/S0263-4368(02)00029-X
  17. M. Bodegard, K. Granath, L. Stolt, and A. Rockett, Sol. Energy Mater. Sol. Cells 58, 199 (1999). https://doi.org/10.1016/S0927-0248(98)00203-7