DOI QR코드

DOI QR Code

Rapid Sintering and Synthesis of Nanostuctured FeCrAlSi-Al2O3 Composite by High-Frequency Induction Heating

고주파유도 가열에 의한 나노구조의 FeCrAlSi-Al2O3 복합재료의 합성 및 급속소결

  • Du, Song Lee (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Cho, Sung-Hun (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Ko, In-Yong (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Sang-Whan (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University)
  • 두송이 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 조승훈 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 고인용 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 도정만 (한국과학기술 연구원) ;
  • 윤진국 (한국과학기술 연구원) ;
  • 박상환 (한국과학기술 연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재 개발 연구센터)
  • Received : 2010.12.01
  • Published : 2011.03.25

Abstract

Nanopowder of $Fe_2O_3$, Al, Cr and Si was fabricated by high energy ball milling. A dense nanostuctured $A_2O_3$ and $6.06Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ composite was simultaneously synthesized and consolidated using high frequency induction heated sintering method within 1 minute from mechanically activated powders of $Fe_2O_3$, Al, Cr and Si. The grain sizes of $Al_2O_3$ and $Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ in composite are 80 and 18 nm, respectively.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. Klower, Materials and Corrosion 47, 685 (1996). https://doi.org/10.1002/maco.19960471205
  2. P. Kofstad : "High temperature corrosion", Elsevier Appl. Sci. Publ., London, New York, (1988).
  3. X. Wang, R. Gong, Peigang, L. Liu, and W. Chang, Materials Science and Engineering A 466, 178 (2007). https://doi.org/10.1016/j.msea.2007.02.051
  4. V.D.F.C. Lins, M.A. Freitas, and E.M.D.P. Silva, 46, 1895 (2004). https://doi.org/10.1016/j.corsci.2003.10.015
  5. El-Eskandarany MS, J. Alloys & Compounds. 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  6. Fu L, Cao LH, and Fan YS, Scripta Materialia. 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6
  7. A. Couret, G.. Molenat, J. Galy, and M. Thomas, Intermetallics, 16, 1134 (2008). https://doi.org/10.1016/j.intermet.2008.06.015
  8. Berger S, Porat R, and Rosen R. Progress in Materials. 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  9. S.K Bae, I.J. Shon, J.M Doh, J. K. Yoon, and I.Y. Ko, Scripta Materialia 58, 425 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.029
  10. I.J. Shon, D.K. Kim, K.T. Lee, and K.S. Nam, Met. Mater. Inter. 14, 593 (2008). https://doi.org/10.3365/met.mat.2008.10.593
  11. H.S. Kang, J.M. Doh, K.T. Hong, I.Y. Ko, and I.J. Shon, Kor. J. Mat. Mater. 48, 1009 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1009
  12. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  13. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  14. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  15. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  16. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York, 1998.
  17. O.Knacke, O. Kubaschewski, K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag (1991).
  18. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  19. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  20. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  21. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  22. Mohamed N. Rahaman, Aihua Yao, B. Sonny Bal, Jonathan P. Garino, and Michael D. Ries, J. Am. Ceram. Soc. 90, 1965 (2007). https://doi.org/10.1111/j.1551-2916.2007.01725.x