DOI QR코드

DOI QR Code

Hydrogenation Properties of Mg-5 wt.% TiCr10Nbx (x=1,3,5) Composites by Mechanical Alloying Process

기계적 합금화법으로 제조된 Mg-5 wt.% TiCr10Nbx (x=1,3,5) 복합재료의 수소화 특성 평가

  • Kim, Kyeong-Il (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University) ;
  • Hong, Tae-Whan (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University)
  • 김경일 (충주대학교 신소재공학과/친환경 에너지 변환.저장 소재 및 부품개발 연구센터) ;
  • 홍태환 (충주대학교 신소재공학과/친환경 에너지 변환.저장 소재 및 부품개발 연구센터)
  • Received : 2010.10.06
  • Published : 2011.03.25

Abstract

Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develope kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). $Mg-TiCr_{10}Nb$ systems were evaluated for hydrogen kinetics by Sievert's type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. G. Barkhordarian, T. Klassen, and R. Bormann, Scripta Mater. 49, 213 (2003). https://doi.org/10.1016/S1359-6462(03)00259-8
  2. A.R. Yavari, A. LeMoulec, F.R. de Castro, S. Deledda, O. Fredrichs, W.J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and A. Kvick, Scripta Mater. 52, 719 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.020
  3. J.-L. Bovet, B.Chevalier, M.Y. Song, and B. Darriet, Scripta Mater. 356-357, 570 (2003).
  4. J.-L. Bovet, F.J. Castro, and B.Chevalier, Scripta Mater. 52, 33 (2005). https://doi.org/10.1016/j.scriptamat.2004.09.001
  5. M.Y. Song, I.H. Kwon, and J.-S. Bae, Int. J. Hydrogen Energy 30, 1107 (2005). https://doi.org/10.1016/j.ijhydene.2004.10.019
  6. J. Hout, J.F. Pellerier, L.B. Lurio, M. Sutton, and R. Schulz, J. Alloys Compd. 348, 319 (2003). https://doi.org/10.1016/S0925-8388(02)00839-3
  7. W. Orelerich, T. Klassenm, and R. Bormann, J. Alloys Compd. 315, 237 (2001). https://doi.org/10.1016/S0925-8388(00)01284-6
  8. Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, C. Luckey, and H.K. Liu, J. Alloys Compd. 422, 299 (2006). https://doi.org/10.1016/j.jallcom.2005.11.074
  9. J.-H. You, S.-W. Cho, G. Shim, G.-S. Choi, C.-N. Park, and J. Choi, Trans. of Korean Hydrogen and New Energy Society 17, 125 (2006).
  10. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, and A. Kamegawa, Met. Mater. Int. 7, 67 (2001) https://doi.org/10.1007/BF03026941
  11. M. Okada, T. Kurriwa, A. Kamegawa, and H. Takamura, Mat. Sci. Eng. A, 329-331, 305 (2002) https://doi.org/10.1016/S0921-5093(01)01580-5
  12. M. Okada, T. Chou, A. Kamegawa, T. Tamura, H. Takamura, A. Matsukawa, and S. Yamashita, J. Alloys Compd. 356-357, 480 (2003) https://doi.org/10.1016/S0925-8388(02)01246-X
  13. K.-I. Kim and T.-W. Hong, Inst. Met. Mater. 47, 433 (2009)
  14. M. Dirnheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gurgleisch, and R. Bormann, Scripta Mater. 56, 841 (2007). https://doi.org/10.1016/j.scriptamat.2007.01.003
  15. Adel Y. Easyed, Int. J. Hydrogen Energy 25, 357 (2000). https://doi.org/10.1016/S0360-3199(99)00029-4
  16. A. M. Fernadez Samuel, Meera Rao, and O.N. Srivastava, Progress in Crystal Growth and Characterization 7, 391 (1983). https://doi.org/10.1016/0146-3535(83)90038-2
  17. K. Shin, S. Seok, and T.-W. Hong, J. Kor. Inst. Met. & Mater. 43, 708 (2005).
  18. S. Orimo and H. Fugii, J. Alloys Compd. 32, L16 (1996).