DOI QR코드

DOI QR Code

Dendrite Tip Shapes of Pivalic Acid-Ethanol and Succinonitrile-Salol Systems

Pivalic Acid-Ethanol 및 Succinonitrile-Salol 계에서의 수지상정 선단의 형상

  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Park, Young-Min (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Chang, Si-Young (Department of Materials Engineering, Korea Aerospace University)
  • 석명진 (강원대학교 재료금속공학과) ;
  • 박영민 (강원대학교 재료금속공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 장시영 (한국항공대학교 항공재료공학과)
  • Received : 2011.02.10
  • Published : 2011.07.25

Abstract

The shape of a dendrite tip has long been approximated by a paraboloid of revolution, but many attempts have been made as well to more accurately match the dendrite tip profile using other mathematical functions: power function, 4th order polynomial, and hyperbolic function. In the present work, dendrite tip shapes were matched by parabolic function. The differences between the dendrite tip shapes of pivalic acid(PVA)-ethanol(Eth) and succinonitrile(SCN)-salol systems, characterized by anisotropic and isotropic solid-liquid interfacial properties, respectively, were quantitatively treated using shape parameters. The PVA-Eth system showed a slightly higher Z/R value than the SCN-salol system, their Z/R values lying in the range 2-4. (Z is the distance from the tip beyond which the parabolic fit starts to deviate from the profile, and R the tip radius.) ${\lambda}_P$ is the distance from the tip beyond which side branching starts to appear, and is larger in the PVA-Eth system than the SCNsalol system. ${\lambda}_P$ is different for both sides of the 2-dimensional dendrite profile. The difference of ${\lambda}_P$ between both sides of the dendrite is larger for PVA-Eth system than for SCN-salol, implying that the dendrite of PVA-Eth is less symmetric than that of SCN-salol.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. R. Trivedi, S. Liu, and S. Williams, Nature Mater. 1, 749 (2002). https://doi.org/10.1038/nrd929
  2. P. Pelce, Dynamics of Curved Fronts, Academic Press, Boston (1988).
  3. G. P. Ivantsov, Dokl. Akad. Nauk SSSR 58, 567 (1947).
  4. R. Trivedi and A. Karma, Encyclopedia of Applied Physics, Vol. 23, p. 441, Wiley-VCH Verlag, Berlin (1998).
  5. M. E. Glicksman and S. P. Marsh, Handbook of Crystal Growth, Vol. 1 (ed. D. T. J. Hurle), p. 1075, Elsevier Science Publishers B.V. (1993).
  6. U. Bisang and J. H. Bilgram, J. Crystal Growth 166, 212 (1996). https://doi.org/10.1016/0022-0248(96)00051-6
  7. H. M. Singer and J. H. Bilgram, Phys. Rev. A. 69, 032601 (2004).
  8. J.C. LaComb, M.B. Koss, V.E. Fradkov, and M.E. Glicksman, Phys. Rev. E. 52, 2778 (1995). https://doi.org/10.1103/PhysRevE.52.2778
  9. J.C. LaComb, M.B. Koss, and M.E. Glicksman, Metall. Mater. Trans. 38A, 116 (2007).
  10. S. Gurevich, A. Karma, M. Plapp, and R. Trivedi, Phys. Rev. E. 81, 011603 (2010).
  11. M. Rappaz, J. Friedli, A. Mariaux, and M. Salgado- Ordorica, Scripta Mater. 62, 904 (2010). https://doi.org/10.1016/j.scriptamat.2010.02.039
  12. A. Pocheau, J. Deschamps, and M. Georgelin, Phys. Rev. E. 81, 051608 (2010). https://doi.org/10.1103/PhysRevE.81.051608
  13. M. E. Glicksman and N. B. Singh, Rapidly Solidified Powder Aluminum Alloys (ASTM STP 890) (eds. M. E. Fine and E. A. Starke, Jr.), p. 44, American Society for Testing and Materials, Philadelphia (1986).
  14. A. Karma and W-J. Rappel, J. Crystal Growth 174, 54 (1997). https://doi.org/10.1016/S0022-0248(96)01060-3
  15. M. J. Suk, Y. M. Park, and Y. D. Kim, Scripta Mater. 57, 985 (2007). https://doi.org/10.1016/j.scriptamat.2007.08.013
  16. M. J. Suk, Y. M. Park, and Y. C. Kim, J. Mater. Sci. Technol. 24, 340 (2008).
  17. M. J. Suk and K. Leonartz, J. Crystal Growth 208, 809 (2000). https://doi.org/10.1016/S0022-0248(99)00457-1
  18. R. Trivedi and J. T. Mason, Metall. Trans. 22A, 235 (1991).
  19. E. Cadrili, I. Karaca, H. Kaya, and N. Marasli, J. Crystal Growth 255, 190 (2003). https://doi.org/10.1016/S0022-0248(03)01214-4
  20. A. Karma, Y. H. Lee, and M. Plapp, Phys. Rev. E. 61, 3996 (2000). https://doi.org/10.1103/PhysRevE.61.3996
  21. R. N. Grugel and Y. Zhou, Metall. Trans. 20A, 969 (1989).
  22. S. Akamatsu and T. Ihle, Phys. Rev. E. 56, 4479 (1997). https://doi.org/10.1103/PhysRevE.56.4479