Effect of Die Geometry on Expansion of Corn Flour Extrudate

사출구 구조에 따른 옥수수가루 압출성형물의 팽화특성

  • Gu, Bon-Jae (Department of Food Science and Technology, Kongju National University) ;
  • Ryu, Gi-Hyung (Department of Food Science and Technology, Kongju National University)
  • Received : 2010.11.30
  • Accepted : 2011.04.27
  • Published : 2011.05.30

Abstract

The objective of this study was to determine the effect of die geometry on expansion index of extruded corn flour. Water solubility index, water absorption index and specific mechanical energy (SME) input were analyzed to observe the relationship with die geometry. The feed moisture content was 20 and 25%. Die dimensions were tapered angle (57, 95o) and length/diameter (L/D) ratio of die land (0.67, 1.67 and 2.67). The SME input was the highest at 20% moisture content and 2.23E-10 m3 die constant. The sectional and volumetric expansion indices at 20% moisture were increased with increase in die constant. However, die constant did not influence sectional expansion index of corn flour extrudate at 25% moisture content. The extruded corn flour at 25% moisture content had higher longitudinal expansion index than those of extruded corn flour at 20% moisture content. Sectional expansion and longitudinal expansion index were negatively correlated. The water absorption index and water solubility index were not affected with the die constant.

사출구 구조가 압출성형의 목적변수인 팽화특성에 영향을 미치는지 알아보기 위하여 사출구의 기하학적 구조를 사출구상수로 산출하여 사출구상수와 수분함량에 따른 팽화특성을 비롯한 비기계적 에너지 투입량, 수분용해지수, 수분흡착지수를 분석하였다. 압출성형 공정변수는 수분함량(20, 25%), 사출구멍의 길이와 직경비(L/D 0.67, 1.67, 2.67), 내벽에서 좁아지는 각(57, $95^{\circ}$)이였다. 비기계적 에너지 투입량은 수분함량 20%, 사출구상수 2.23E-10 $m^3$에서 가장 높은 값을 나타내었다. 수분함량 20%에서 사출구상수가 증가하면, 직경팽화지수와 체적팽화지수는 증가하였다. 한편 수분함량 25%에서 직경팽화지수와 체적팽화지수는 사출구상수의 영향을 받지 않았다. 또한 길이팽화지수는 수분함량이 20%에서 25%로 증가할 때 증가하였으며 직경팽화지수와 음의 상관관계를 나타내었다. 수분흡착지수와 수분용해지수는 사출구상수에 영향을 받지 않았다.

Keywords

References

  1. AACC. 1983. Approved Method of the AACC(10th ed). Method 56-20. American Association of Cereal Chemists, St. Paul, MN, USA.
  2. Alvarez-Martinez, Kondury KP, Harper JM. 1988. A general model for expansion of extruded products. J. Food Sci. 53: 609-615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x
  3. Baladran-Quintana RR, Barbosa-Canovas GV, Zazueta-Morales JJ, Anzaldua-Morales A, Quintero-Ramos A. 1998. Functional and nutritional properties of extruded whole pinto bean meal (Phaseolus vulgaris L.). J. Food Sci. 63: 113-116. https://doi.org/10.1111/j.1365-2621.1998.tb15688.x
  4. Bouzaza D, Arhaliass A, Bouvier JM. 1996. Die design and dough expansion in low moisture extrusion-cooking process. J. Food. Eng. 29: 139-152. https://doi.org/10.1016/0260-8774(95)00076-3
  5. Chaing BY, Johnson JA. 1977. Gelatinization of starch in extruded products. Cereal Chem. 54: 436-443.
  6. Chinnaswamy R, Hanna MA. 1987. Nozzle dimension effects on the expansion of extrusion cooked corn starch. J. Food Sci. 52: 1746-1747. https://doi.org/10.1111/j.1365-2621.1987.tb05924.x
  7. Chinnaswamy R, Hanna MA. 1988. Optimum extrusion-cooking conditions for maximum expansion of corn starch. J. Food Sci. 53: 834-840. https://doi.org/10.1111/j.1365-2621.1988.tb08965.x
  8. Han JY, Lee YS, Ryu GH. 2008. Studies on characteristics of physicochemical properties and saccharification of extruded white ginseng. Food. Eng. Prog. 12: 36-43.
  9. Harper JM. 1981. Extrusion of starches and starchy materials. In: Extrusion of Foods. Vol. II. CRC Press, Inc., Boca Raton, FL, USA, pp. 41-60.
  10. Harper JM. 1986. Extrusion texturization of foods. Food Technol. 40: 70-76.
  11. Jeong HS, Min YK, Toledo RT. 2002. Effects of low temperature extrusion method on the physical properties and cell structure of pregelatinized rice flour extrudate. Food Eng. Prog. 6: 145-151.
  12. Jin T, Kim MH, Ryu HJ, Lee KH, Han MS, Cho SS, Lee HK, Ryu GH. 2008. Quality characteristics of rice cake(injulmi) made with traditional process and instant injulmi machine and different steeping time. Food. Eng. Prog. 12: 97-106.
  13. Majzoobi M, Farahnaky A. 2010. Comparison of the effects of extrusion cooking on some cereal starches. Int. J. Food. Eng. 6: 1456-1471.
  14. Mason WR, Hoseney RC. 1986. Factors affection the viscosity of extrusion-cooked wheat starch. Cereal Chem. 63: 436-441.
  15. Miller RC. 1990. Unit operations and equipment. IV. Extursion and extruders. In: Breakfast Cereals and How They Are Made. Fast RB, Caldwell EF (eds). American Association of Cereal Chemists, Inc., St. Paul, MN, USA, pp. 135-193.
  16. Padmanabhan M, Bhattacharya M. 1989. Analysis of pressure drop in extruder dies. J. Food Sci. 54: 709-713. https://doi.org/10.1111/j.1365-2621.1989.tb04687.x
  17. Rossen JL, Miller RC. 1973. Food extrusion. Food Technol. 27: 46-53.
  18. Ryu GH. 1995. Extrusion process with gas injection. Food Sci. Ind. 28: 30-38.
  19. Ryu GH, Mulvaney SJ. 1997. Analysis of physical properties and mechanical energy input of cornmeal extrudates fortified with dairy products by carbon dioxide injection. Korean J. Food Sci. Technol. 29: 947-954.
  20. Ryu GH, Ng PKW. 2001. Effects of selected process parameters on expansion and mechanical properties of wheat flour and whole cornmeal extrudates. Starch-Starke 53: 147-154. https://doi.org/10.1002/1521-379X(200104)53:3/4<147::AID-STAR147>3.0.CO;2-V
  21. Senouci A, Smith AC. 1986. The extrusion cooking of potato starch material. Starch-Starke 38: 78-82. https://doi.org/10.1002/star.19860380304
  22. Tayeb J, Valle GD, Barres C, Vergnes B. 1992. Simulation of transport phenomena in twin-screw extruders. In: Food Extrusion Science and Technology. Kokini JL, Ho CT, Karwe MV (eds). Marcel Dekker, Inc., New York, NY, USA. pp. 41-70.