Effects of Particle Size and High Pressure Process on the Extraction Yield of Oil Compounds from Soybean Powder Using Hexane and Supercritical Fluid

입자 크기와 초고압 처리에 따른 유기용매와 초임계 유체 추출법에서의 대두유 추출수율의 변화

  • Yoon, Won-Byong (Department of Food Science and Biotechnology, Kangwon National University)
  • 윤원병 (강원대학교 바이오산업공학부 식품생명공학전공)
  • Received : 2011.01.12
  • Accepted : 2011.06.27
  • Published : 2011.08.31

Abstract

Effects of particle size and high pressure processing on the extraction rate of oil compounds from soybean powder were evaluated by Soxhlet method using hexane and supercritical fluid extraction (SFE) using $CO_{2}$. SFE was carried out at 4,000 psi and $50^{\circ}C$ for 4 hr. The mean particle sizes were varied from 26.7 to 862.0 ${\mu}m$ by controlling milling time. Saturation solubility increased as the particle size decreased. At large particle size, high pressure processing (HPP) showed higher extraction yield in both hexane extraction and SFE, but, as the particle size decreased, the HPP was irrelevant to the extraction yield in SFE. The higher extraction rate obtained from the smaller particle size. The scanning electronic microscopy of soybean powder treated by HPP showed pores on the surface of the particle. The higher extraction rate and yield from HPP treatment might be due to the less internal resistance of transferring the solvent and miscellar in the solid matrix by collapsing of tissues.

유기용매와 초임계유체를 사용하여 대두분말에서 지방성분을 추출하는 공정에서 분말화공정(분쇄)의 시간의 변화에 따른 입자도와 초고압처리에 의한 추출속도를 측정하였다. 대두분말의 입자가 작을수록 추출속도가 향상되었으면 이는 입자의 크기가 작아짐에 따라 전체적인 표면적이 증가하여 고-액추출에서 중요한 반응기작인 물질전달속도를 증가시켰기 때문이라 판단된다. 초고압공정을 적용 시 동일한 입자크기에서 추출속도가 현저히 향상되었으며 이는 대두분말 내부에서 발생하는 확산현상에 대한 저항이 초고압상태에서의 변화로 감소되었기 때문이라 사료된다. 초임계유출에 의한 추출은 수율이 낮은 단점이 있으나 입자의 크기가 큰 상태에서는 초고압처리를 전처리로 사용할 경우 시간당 추출량을 상당부분 증가시킬 수 있음을 보여주었으나, 입자크기가 작을 경우 초고압처리가 영향을 미치지 못함을 보여주었다.

Keywords

Acknowledgement

Supported by : 교육과학기술부, 강원도, 강릉시, 강릉과학산업진흥원

References

  1. Aguilera, J.S. 2003. Solid-Liquid Extraction. In: Extraction optimization in food engineering. Tzia C and Liadakis G (ed). Marcel and Dekker, Inc., New York, USA. pp35-56.
  2. Geankoplis CJ. 2003. Transport Processes and Separation Process Principles, 4th ed. Prentice Hall, New York, USA, p760.
  3. Hong IK, Rho SW, Lee KS, Yoo KP. 1990. Modeling of soybean oil bed extraction with supercritical carbon dioxide. Korean J. of Chem. Eng., 7: 40-46. https://doi.org/10.1007/BF02697340
  4. Jeong DH. 1999. Science of soybean. Daekwangseolim. Seoul. Korea. p. 25
  5. Kim CH, Kwon MC, Qadir SA, Hwang B, Nam JH, Lee HY. 2007. Toxicity reduction and improvement of anticancer activities from Rhodiola sachalinensis A. Bor by ultra high pressure extracts process. Korean J. Medicinal Crop Sci. 15: 411-416.
  6. Kim IH, Yoon SH. 1991. Extraction of soybean oil using supercritical carbon dioxide and its characteristics. Korean J. Food Sci. Technol. 23:677-682.
  7. Kim SS, Jeong MH, Seo YC, Kim JS, Kim NS, Ahn JH, Hwang B, Lee HY. 2010. Comparison of antioxidant activities by high pressure extraction of Codonopsis lanceolata from different production areas. Korean J. Medicinal Crop Sci. 18: 248-254.
  8. Lee KJ. Choi SD. 2008 Application of biological industry using high hydrostatic pressure(HHP) system. Korean J. Biotechnol. Bioeng. 23: 362-368.
  9. McHugh MA, Krukonis VJ. 1994. Supercritical Extraction Priciples and Practice, 2nd ed. Butterworth-Heinemann, London, UK, pp. 299-303.
  10. Son JH. 2008. Analysis experiment of food. Jinro. Seoul. Korea, p.35.
  11. Vishwanathan KH, Singh V, Subramanian R. 2011. Influence of particle size on protein extractability from soybean and okara. J. Food Eng., 102: 240-246. https://doi.org/10.1016/j.jfoodeng.2010.08.026
  12. Wiese KL, Snyder HE. 1987. Analysis of the oil extraction process in soybeans: a new continuous procedure, J. Am. Oil Chem Soc., 64:402-406. https://doi.org/10.1007/BF02549304