DOI QR코드

DOI QR Code

GPS-Based Orbit Determination for KOMPSAT-5 Satellite

  • Hwang, Yoo-La (Broadcasting & Telecommunications Convergence Research Laboratory, ETRI) ;
  • Lee, Byoung-Sun (Broadcasting & Telecommunications Convergence Research Laboratory, ETRI) ;
  • Kim, Young-Rok (Department of Astronomy and Space Sciences, Yonsei University) ;
  • Roh, Kyoung-Min (Space Geodesy Research Group, KASI) ;
  • Jung, Ok-Chul (LEO Satellite Mission Operations Department, KARI) ;
  • Kim, Hae-Dong (Department of Aerospace Engineering, Sejong University)
  • Received : 2011.01.14
  • Accepted : 2011.05.19
  • Published : 2011.08.30

Abstract

Korea Multi-Purpose Satellite-5 (KOMPSAT-5) is the first satellite in Korea that provides 1 m resolution synthetic aperture radar (SAR) images. Precise orbit determination (POD) using a dual-frequency IGOR receiver data is performed to conduct high-resolution SAR images. We suggest orbit determination strategies based on a differential GPS technique. Double-differenced phase observations are sampled every 30 seconds. A dynamic model approach using an estimation of general empirical acceleration every 6 minutes through a batch least-squares estimator is applied. The orbit accuracy is validated using real data from GRACE and KOMPSAT-2 as well as simulated KOMPSAT-5 data. The POD results using GRACE satellite are adjusted through satellite laser ranging data and compared with publicly available reference orbit data. Operational orbit determination satisfies 5 m root sum square (RSS) in one sigma, and POD meets the orbit accuracy requirements of less than 20 cm and 0.003 cm/s RSS in position and velocity, respectively.

Keywords

References

  1. S.R. Lee, "Overview of KOMPSAT-5 Program, Mission, and System," IGARSS 2010, Honolulu, HI, July 25-30, 2010, pp. 797- 800.
  2. J.L. Gerner et al., "TOPSTAR 3000 - An Enhanced GPS Receiver for Space Applications," EESA, Bulletin 104, Nov. 2000.
  3. O. Montenbruck et al., "Preflight Validation of the IGOR GPS Receiver for TerraSAR-X," GTN-TST-0200 ver. 1.2, May 2, 2005.
  4. Y. Yoon et al., "TerraSAR-X Precise Trajectory Estimation and Quality Assessment," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, Jan. 2009, pp. 1859-1868.
  5. H. Rim et al., "CHAMP Precision Orbit Determination," Adv. Astronautical Sci., vol. 109, 2002, pp. 493-500.
  6. Y. Hwang et al., "Orbit Determination Using Single and Double- Differenced Methods: SAC-C and KOMPSAT-2," Adv. Space Res., vol. 47, no. 1, 2011, pp.138-148. https://doi.org/10.1016/j.asr.2010.07.027
  7. Y. Hwang et al., "Precise Orbit Determination of LEO Satellite using Dual-Frequency GPS Data," J. Astronomy Space Sci., vol. 26, no. 2, 2009, pp. 229-236 (in Korean). https://doi.org/10.5140/JASS.2009.26.2.229
  8. Z. Kang, P. Nagel, and R. Pastor, "Precise Orbit Determination for GRACE," Adv. Space Research, vol. 31, no. 8, 2003, pp. 1875- 1881. https://doi.org/10.1016/S0273-1177(03)00159-5
  9. Z. Kang et al., "Precise Orbit Determination for the GRACE Mission using Only GPS Data," J. Geodesy, vol. 80, no. 6, 2006, pp. 322-331. https://doi.org/10.1007/s00190-006-0073-5
  10. Z. Kang et al., "Impact of GPS Satellite Antenna Offsets on GPSBased Precise Orbit Determination," Adv. Space Research, vol. 39, 2007, pp. 1524-1530. https://doi.org/10.1016/j.asr.2006.11.003
  11. H. Bock et al., "Precise Orbit Determination for the GOCE Satellite using GPS," Adv. Space Res., vol. 29, 2007, pp. 1638- 1647.
  12. P.N.A.M. Visser et al., "Orbit Determination for the GOCE Satellite," Adv. Space Res., vol. 43, 2009, pp. 760-768. https://doi.org/10.1016/j.asr.2008.09.016
  13. F. Lemoine et al., "The Development of the Joint NASA/GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Models," EGM96, NASA, TP-1998-206861, 575, July 1998.
  14. http://igscb.jpl.nasa.gov
  15. Z. Altamimi et al., "ITRF2005: A New Release of the International Terrestrial Reference Frame based on Time Series of Station Positions and Earth Orientation Parameters," J. Geophys. Res., 112(B9), B09401, 2007.
  16. T.P. Yunck, "Orbit Determination," Global Positioning System, B.W. Parkinson and J.J. Spilker (Eds.), Washington DC: Theory and Applications AIAA Publications, 1996.
  17. Y. Hwang et al., "KOMPSAT-2 Orbit Determination Status Report," Proc. AIAA/AAS Specialist Conf., Toronto, Ontario, Aug. 2-5, 2010, AIAA-2010-8260.
  18. C. Foerste et al., "EIGEN-GL05C - A New Global Combined High-resolution GRACE-based Gravity Field Model of the GFZGRGS Cooperation," General Assembly European Geosciences Union (Vienna, Austria 2008), Geophys. Res. Abstracts, vol. 10, Abstract No. EGU2008-A-06944, 2008.
  19. V. Mendes et al., "Improved Mapping Functions for Atmospheric Refraction Correction in SLR," Geophys. Res. Lett., vol. 29, no. 10, 2002. p. 1414.
  20. O. Colombo, "NASA Technical Memorandum Altimetry, Orbits and Tides," NASA-TM-86180, 1984.
  21. P. Knocke, J. Ries, and B. Tapley, "Earth Radiation Pressure Effects on Satellites," Proc. AIAA/AAS Astrodynamics Conf., Minneapolis, Minnesota, Aug. 15-17, 1988, pp. 577-586.
  22. A. Hedin, "Extension of the MSIS Thermosphere Model into the Middle and Lower Atmosphere," J. Geophys. Res., vol. 96, no. A2, 1991, pp. 159-1172.
  23. T. Martin, $MicroCosm^{(R)}$ Software Manuals, ver. 1999, chap. 3, Van Martin Systems, Inc., Rockville, MD, Nov. 2000.
  24. http://www.bernese.unibe.ch/course/info.html
  25. Y. Hwang, B.S. Lee, and J. Kim, "KOMPSAT-5 Precise Orbit Determination Using Simulated GPS Data," Proc. Korean Aerospace Spring Conf., Apr. 2010 (in Korean).

Cited by

  1. Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC vol.29, pp.3, 2011, https://doi.org/10.5140/jass.2012.29.3.275
  2. 다목적실용위성 3호 발사 후 초기 궤도 운영결과 분석 vol.41, pp.4, 2011, https://doi.org/10.5139/jksas.2013.41.4.319
  3. Validation of Geostationary Satellite Orbit Determination Using Single-Station Antenna Tracking Data vol.50, pp.6, 2013, https://doi.org/10.2514/1.a32334
  4. Estimation of Incoherent Scattered Field by Multiple Scatterers in Random Media vol.38, pp.1, 2011, https://doi.org/10.4218/etrij.16.0114.1237
  5. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation vol.17, pp.1, 2017, https://doi.org/10.3390/s17010170
  6. Optical Tracking Data Validation and Orbit Estimation for Sparse Observations of Satellites by the OWL-Net vol.18, pp.6, 2011, https://doi.org/10.3390/s18061868
  7. Evaluation of Rational Function Model for High-Resolution KOMPSAT-5 SAR Imagery with Different Sizes of Virtual Grid and Reference Coordinate Systems vol.23, pp.9, 2011, https://doi.org/10.1007/s12205-019-0831-6
  8. Performance Comparison of KOMPSAT-5 Precision Orbit Determination with GRACE vol.2020, pp.None, 2011, https://doi.org/10.1155/2020/7358286
  9. A More Reliable Orbit Initialization Method for LEO Precise Orbit Determination Using GNSS vol.12, pp.21, 2020, https://doi.org/10.3390/rs12213646
  10. Overview of the Flight Dynamics Subsystem for Korea Pathfinder Lunar Orbiter Mission vol.8, pp.8, 2021, https://doi.org/10.3390/aerospace8080222