DOI QR코드

DOI QR Code

Application of Hydroacoustic System and Kompsat-2 Image to Estimate Distribution of Seagrass Beds

수중음향과 Kompsat-2 위성영상을 이용한 해초지 분포 추정

  • Kim, Keunyong (Department of Oceanography, College of Natural Sciences, Chonnam National University) ;
  • Eom, Jinah (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Choi, Jong-Kuk (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Ryu, Joo-Hyung (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Kwang Yong (Department of Oceanography, College of Natural Sciences, Chonnam National University)
  • 김근용 (전남대학교 해양학과) ;
  • 엄진아 (한국해양과학기술원 해양위성센터) ;
  • 최종국 (한국해양과학기술원 해양위성센터) ;
  • 유주형 (한국해양과학기술원 해양위성센터) ;
  • 김광용 (전남대학교 해양학과)
  • Received : 2012.05.02
  • Accepted : 2012.07.09
  • Published : 2012.08.31

Abstract

Despite the ecological importance of seagrass beds, their distributional information in Korean coastal waters is insufficient. Therefore, we used hydroacoustic system to collect accurate bathymetry and classification of seagrass, and Kompsat-2 (4 m spatial resolution) image for detection of seagrass beds at Deukryang Bay, Korea. The accuracy of Kompsat-2 image classification was evaluated using hydracoustic survey result using error matrix and Kappa value. The total area of seagrass beds from satellite image classification was underestimated compared to the hydroacoustic survey, estimated 3.9 and $4.5km^2$ from satellite image and hydroacoustic data, respectively. Nonetheless, the accuracy of Kompsat-2 image classification over hydroacoustic-based method showing 90% (Kappa=0.85) for the three class maps (seagrass, unvegetated seawater and aquaculture). The agreement between the satellite image classification and the hydroacoustic result was 77.1% (the seagrass presence/absence map). From our result of satellite image classification, Kompsat-2 image is suitable for mapping seagrass beds with high accuracy and non-destructive method. For more accurate information, more researches with a variety of high-resolution satellite image will be preceded.

해초지의 생태적 중요성에도 불구하고 국내 연안에 분포하는 해초지 규모에 대한 정보가 미비하다. 장흥군 회진면 일대의 해초지를 대상으로 수중음향측심기와 고해상도 Kompsat-2($4{\times}4m$) 위성영상을 이용하여 식생유무를 탐지하고 분포크기를 파악하는 연구가 수행되었다. 위성영상을 이용한 식생분석의 정확도는 음향측심기를 통해 얻은 자료분석과 이를 비교하여 검증되었다. Kompsat-2 영상분석으로 계산된 회진면 일대의 해초지 면적은 약 $3.9km^2$로 수중음향 탐사를 통해 구해진 $4.5km^2$ 보다 과소평가 되었다. Kompsat-2 위성영상을 객체기반 영상분류법으로 해초 식생을 분석한 결과는 수중음향 결과 값에 대해 90%의 정확도를 보였는데, 이와 같이 높은 정확도는 Kappa 지수(0.85)로도 확인되었다. 또한 위성영상과 수중음향 결과 간의 유사도는 77.1%로 비교적 높았다. 생물 비파괴적인 수중음향조사와 Kompsat-2 영상분석으로 국내 연안에 산재해 있는 해초지 식생의 광역적인 조사가 가능할 것으로 기대되며, 보다 정확한 탐지를 위해서 다양한 고해상도 위성을 이용한 연구가 활발히 이루어져야 할 것이다.

Keywords

References

  1. 강돈혁, 조성호, 라형술, 김종만, 나정열, 명정구, 2006. 수중음향을 이용한 해초 서식처(Seagrass Habitats)의 공간 및 수직 분포 추정. Ocean and Polar Research, 28: 225−236. https://doi.org/10.4217/OPR.2006.28.3.225
  2. 김근용, 김주형, 김광용, 2008. 디지털 음향측심기를 이용한 광양만 잘피(Zostera marina L.)의 피도와 생물량 추정. Algae, 23: 83-90. https://doi.org/10.4490/ALGAE.2008.23.1.083
  3. 김정배, 박정임, 이근섭, 2009. 득량만에 자생하는 잘피의 분포 현황. 한국수산학회지, 42: 509-517. https://doi.org/10.5657/kfas.2009.42.5.509
  4. 김정배, 박정임, 최우정, 이재성, 이근섭, 2010. 섬진강 하구에 자생하는 잘피의 분포 현황 및 생태적 특성. 한국수산학회지, 43: 351-361. https://doi.org/10.5657/kfas.2010.43.4.351
  5. 민지은, 유주형, 최종국, 박흥식, 2010. 고해상도 위성영상을 이용한 산호초 서식환경 모니터링: 축라군 웨노섬을 중심으로. Ocean and Polar Research, 32: 53-61. https://doi.org/10.4217/OPR.2010.32.1.053
  6. 박정임, Wentao Li, 김정배, 이근섭, 2009. 이식된 잘피의 생산성 및 형태적 특성 변화. 한국해양학회지, 14: 41-47.
  7. 최동림, 노재훈, 유주형, 이재학, 장풍국, 이태희, 최동한, 2010a. 2008년 여름철 북부 동중국해에서 대규모 녹조(가시파래) 출현. Ocean and Polar Research, 32: 351-359. https://doi.org/10.4217/OPR.2010.32.4.351
  8. 최종국, 유주형, 엄진아, 노승복, 노재훈, 2010b. 원격탐사 자료를 이용한 근소만 갯벌 퇴적환경 및 저서미세조류 환경 분석. 한국습지학회지, 12: 67-78.
  9. 최태섭, 김광용, 이병권, 이정석, 2005. 잘피의 광합성에 대한 중금속 및 TBT의 독성 영향과 중금속 흡수에 대한 연구. Algae, 20: 157-166. https://doi.org/10.4490/ALGAE.2005.20.2.157
  10. 해양수산부, 2007. 득량만 환경보전해역 환경관리방안 연구. 171 pp.
  11. Barille, L., M. Robin, N. Harin, A. Bargain, and P. Launeau, 2010. Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquat. Bot., 92: 185-194. https://doi.org/10.1016/j.aquabot.2009.11.006
  12. Duarte, C.M. 1991. Seagrass depth limits. Aquat. Bot., 40: 363-377. https://doi.org/10.1016/0304-3770(91)90081-F
  13. Duffy, J.E. 2006. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser., 311: 233-250. https://doi.org/10.3354/meps311233
  14. Fairbanks, C. and J.G. Norris, 2004. Whatcom County submerged aquatic vegetation survey methods. Fairbanks Environmental Services, Inc Marine Resources Consultants.
  15. Foody, G.M. 2002. Status of land cover classification accuracy assessment. Remote Sens. Environ., 80: 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4
  16. Hsieh, P.F., L.C. Lee, and N.Y. Chen, 2001. Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing, IEEE Trans. Geosci. Remote Sens., 39: 2657-2663. https://doi.org/10.1109/36.975000
  17. Kim, K.Y. and T.S. Choi, 2004. Variability in abundance and morphological attributes of Zostera marina L. from the southern coast of Korea. Bot. Mar., 47: 287-294.
  18. Laurent, E.J., H. Shi, D. Gatziolis, J.P. LeBouton, M.B. Walters and J. Liu, 2005. Using the spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns. Remote Sens. Environ., 97: 249-262. https://doi.org/10.1016/j.rse.2005.04.015
  19. Lee, S.Y., C.J. Kwon, S. Lee, and C.I. Choi, 2002. Distribution of eelgrass, Zostera marina L. on coast of the Koreas peninsula: Preliminaty study for eelgrass restoration. Ocean and Polar Research, 24: 55-61. https://doi.org/10.4217/OPR.2002.24.1.055
  20. Lee, S.Y., J.B. Kim, and S.M. Lee, 2006. Temporal dynamics of subtidal Zostera marina and intertidal Zostera japonica on the southern coast of Korea. Mar. Ecol., 27: 133-144. https://doi.org/10.1111/j.1439-0485.2006.00089.x
  21. McKenzie, L.J., M.A. Finkbeiner, and H. Kirkman, 2001. Methods for mapping seagrass distribution. In: Global Seagrass Research Methods, edited by Short, F.T. and R.G., Coles, Elsevier, Amsterdam, Natherlands, pp. 101-121.
  22. Mumby, P.J., E.P. Green, C.D. Clark, and A.J. Edwards, 1998. Digital analysis of multispectral airborne imagery of coral reefs. Coral Reefs, 17: 59-69. https://doi.org/10.1007/s003380050096
  23. Mumby, P.J., W. Skirving, A.E. Strong, J.T. Hardy, E.F. LeDrew, E.J. Hochberg, R.P. Stumpf, and L.T. David, 2004. Remote sensing of coral reefs and their physical environment. Mar. Pollut. Bull., 48: 219-228. https://doi.org/10.1016/j.marpolbul.2003.10.031
  24. Pasqualinia, V., C. Pergent-Martinia, G. Pergenta, M. Agreila, G. Skoufasb, L. Sourbesc, and A. Tsirika, 2005. Use of SPOT 5 for mapping seagrasses: An application to Posidonia oceanica. Remote Sens. Environ., 94: 39-45. https://doi.org/10.1016/j.rse.2004.09.010
  25. Phillips, R.C. and E.G. Menez, 1988. Seagrasses. Smithsonian Institution Press. Washington DC.
  26. Sabol, B.M., R.E. Melton Jr., R. Chamberlain, P.H. Doering, and K. Haunert, 2002. Evaluation of a digital echosounder system for detection of submersed aquatic vegetation. Estuaries, 25: 133-141. https://doi.org/10.1007/BF02696057
  27. Sagawa, T., A. Mikami, T. Komatsu, N. Kosaka, A. Kosako, S. Miyazaki, and M. Takahashi, 2008. Mapping seagrass beds using IKONOS satellite image and side scan sonar measurements: a Japanese case study. Int. J. Remote Sens, 29: 281-291. https://doi.org/10.1080/01431160701269028
  28. Song, C., C.E. Woodrock, K.C. Seto, M.P. Lenney, and S.A. Macomber, 2001. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ., 75: 230-244. https://doi.org/10.1016/S0034-4257(00)00169-3
  29. Thresher, R.E., P.D. Nichols, J.S. Gunn, B.D. Bruce, and D.M. Furlani, 1992. Seagrass detritus as the basis of a coastal planktonic food chain. Limnol. Oceanogr., 37: 1754-1758. https://doi.org/10.4319/lo.1992.37.8.1754
  30. Treitz, P.M., P.J. Howarth, R.C. Suffling, and P. Smith, 1992. Application of detailed ground information to vegetation mapping with high spatial resolution digital imagery. Remote Sens. Environ., 42: 65-82. https://doi.org/10.1016/0034-4257(92)90068-U
  31. Wabnitz, C.C., S. Andréfouët, D. Torres-Pulliza, F.E. Müller-Karger, P.A. Kramer, 2008. Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: Applications to conservation and ecology. Remote Sens. Environ., 112: 3455-3467. https://doi.org/10.1016/j.rse.2008.01.020
  32. Winfield, I.J., C. Onoufriou, M.J. O'Connell, M. Godlewska, R.M. Ward, A.F. Brown, and M.L. Yallop, 2007. Assessment in two shallow lakes of a hydroacoustic system for surveying aquatic macrophytes. Hydrobiologia, 584: 111-119. https://doi.org/10.1007/s10750-007-0612-y

Cited by

  1. Observation of typhoon-induced seagrass die-off using remote sensing vol.154, 2015, https://doi.org/10.1016/j.ecss.2014.12.036
  2. Design and Performance Analysis of an Off-Axis Three-Mirror Telescope for Remote Sensing of Coastal Water vol.26, pp.3, 2015, https://doi.org/10.3807/KJOP.2015.26.3.155
  3. Variability in blue carbon storage related to biogeochemical factors in seagrass meadows off the coast of the Korean peninsula vol.813, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2021.152680