DOI QR코드

DOI QR Code

Bulk Polymerization of L-lactide Using Aluminium Organometallic Compound Supported on Functionalized Silica

표면 기능화된 실리카에 담지된 Al 유기금속화합물을 이용한 L-lactide 벌크중합 특성 연구

  • Yoo, Ji Yun (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2012.03.08
  • Accepted : 2012.06.11
  • Published : 2012.11.25

Abstract

In this study aluminum isopropyl oxide ($Al(O-i-Pr)_3$) was supported on the amine-functionalized surface of silica to synthesize high molecular weight (MW) polylactide (PLA), and it was tested for PLA polymerization behaviors. A silica was funtionalized with silane compound having amine groups, then in-situ treated with $Al(O-i-Pr)_3$. $Al(O-i-Pr)_3$ attached to amine group on silica showed activity only in the presence of MAO (methyl aluminoxane). At the polymerization temperature of $115^{\circ}C$, the conversion and the MW of PLA were increased as the amount of silane was increased. At the polymerization temperature of $130^{\circ}C$, the conversion was decreased while the MW was increased drastically and reached to MW 44000 g/mol when the amine concentration was 3.0 mmol/g. A bimodal type GPC curve was shown at the polymerization temperature of $115^{\circ}C$. As the amount of amine group increased, the peaks of GPC curve were merged. At the polymerization of $130^{\circ}C$, a unimodal GPC curve was shown. $Al(O-i-Pr)_3$ supported on amine-functionalized silica was able to produce higher MW PLA with enhanced activity compared to homogeneous $Al(O-i-Pr)_3$.

본 연구에서는 높은 분자량의 polylactide(PLA)를 중합하기 위하여 aluminum isopropyl oxide($Al(O-i-Pr)_3$)를 아민기로 표면 기능화된 실리카에 담지하고 이를 촉매로 이용하여 생성된 PLA의 중합특성을 확인하였다. 담지촉매는 먼저 실리카 표면을 아민기를 갖는 실란화합물로 기능화한 후 $Al(O-i-Pr)_3$을 in-situ 합성하였다. 기능기에 담지된 $Al(O-i-Pr)_3$는 MAO(methyl aluminoxane) 존재하에 중합활성을 보였다. $115^{\circ}C$에서는 표면 기능화된 아민기양이 증가할수록 전환율과 분자량이 증가하였고, $130^{\circ}C$에서는 표면 기능화된 아민기양이 증가할수록 전환율은 감소하였으나 분자량은 크게 증가하여 표면 기능화된 아민기양이 3.0 mmol일 경우 44000 g/mol로 가장 높은 분자량을 얻었다. GPC curve를 통해 $115^{\circ}C$ 중합온도에서는 분자량 분포곡선이 bimodal 형태에서 저분자량 부분이 크게 증가하여 shoulder 형태로 변화하였으며 $130^{\circ}C$에서는 GPC 단일피크를 보였다. 균일계 $Al(O-i-Pr)_3$ 촉매보다 아민기로 표면 기능화된 실리카에 담지된 $Al(O-i-Pr)_3$ 촉매가 더 높은 활성과 고분자량의 PLA를 합성할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단, (재)한국이산화탄소포집 및 처리연구개발센터

References

  1. T. Willke and K. D. Vorlop, Appl. Microbiol. Biotechnol., 66, 131 (2004). https://doi.org/10.1007/s00253-004-1733-0
  2. L. Shen, E. Worrell, and M. Patel, Biofuel. Bioprod. Bior., 4, 25 (2010). https://doi.org/10.1002/bbb.189
  3. A. K. Yadav, A. B. Chaudhari, and R. M. Kothari, Crit. Rev. Biotechnol., 31, 1 (2011). https://doi.org/10.3109/07388550903420970
  4. Y. Tokiwa and B. P. Calabia, J. Polym. Environ., 15, 259(2007). https://doi.org/10.1007/s10924-007-0066-3
  5. P. Sarazin, X. Roy, and B. D. Favis, Biomaterials, 25, 5965 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.065
  6. K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988). https://doi.org/10.1016/0032-3861(88)90116-4
  7. H. Li and M. A. Huneault, Polymer, 48, 6855(2007). https://doi.org/10.1016/j.polymer.2007.09.020
  8. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  9. D. Garlotta, J. Polym. Environ., 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
  10. A. Kowalski, J. Libiszowski, T. Biela, M. Cypryk, A. Duda, and S. Penczek, Macromolecules, 38, 8170 (2005). https://doi.org/10.1021/ma050752j
  11. A. Kowalski, A. Duda, and S. Penczek, Macromolecules, 31, 2114 (1998). https://doi.org/10.1021/ma971737k
  12. E. Kim, E. W. Shin, I. K. Yoo, and J. S. Chung, Macromol. Res., 17, 346 (2009). https://doi.org/10.1007/BF03218873
  13. C. K. Williams, L. E. Breyfogle, S. K. Choi, W. W. Nam, V. G. Young, Jr., M. A. Hillmyer, and W. B. Tolman, J. Am. Chem. Soc., 125, 11350 (2003). https://doi.org/10.1021/ja0359512
  14. H. J. Chuang, S. F. Weng, C. C. Chang, C. C. Lin, and H. Y. Chen, Dalton Trans., 40, 9601 (2011). https://doi.org/10.1039/c1dt11080b
  15. A. Prebe, P. Alcouffe, P. Cassagnau, and J. F. Gerard, Mater. Chem. Phys., 124, 399 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.054
  16. S. Yan, J. Yin, Y. Yang, Z. Dai, J. Ma, and X. Chen, Polymer, 48, 1688 (2007). https://doi.org/10.1016/j.polymer.2007.01.037
  17. A. Khanna, Y. S. Sudha, S. Pillai, and S. S. Rath, J. Mol. Model., 14, 367 (2008). https://doi.org/10.1007/s00894-008-0278-z
  18. T. Furukawa, H. Sato, R. Murakami, J. Zhang, Y. X. Duan, I. Noda, S. Ochiai, and Y. Ozaki, Macromolecules, 38, 6445 (2005). https://doi.org/10.1021/ma0504668

Cited by

  1. Polymerization of L-lactide Using Methylalumionxane vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.365
  2. Ti(dibenzoylmethane)2(O-i-Pr)2 합성과 L-락티드 개환중합 vol.42, pp.2, 2018, https://doi.org/10.7317/pk.2018.42.2.261