DOI QR코드

DOI QR Code

Case Studies for Nanomaterials' Exposure to Environmental Media

나노물질의 환경 매질별 노출 사례 조사

  • Umh, Ha Nee (Department of Chemical Engineering, Kwangwoon University) ;
  • Roh, Jinkyu (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Byoung-Cheun (Environmental Health Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Park, Sumin (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yi, Jongheop (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
  • 엄하늬 (광운대학교 화학공학과) ;
  • 노진규 (광운대학교 화학공학과) ;
  • 이병천 (국립환경과학원 환경건강연구부) ;
  • 박수민 (서울대학교 화학생물공학부) ;
  • 이종협 (서울대학교 화학생물공학부) ;
  • 김영훈 (광운대학교 화학공학과)
  • Received : 2012.06.20
  • Accepted : 2012.08.29
  • Published : 2012.12.01

Abstract

Recent rapidly growth in nanotechnolgies is promised novel benefits through the exploitation of their unique industrial and biomedical applications. With increasing utilization of nanomaterials in consumer products, the potential release of nanomaterials into the environment and their impacts on the ecosystem and human health have been the issues of concern. Nanomaterials that was exposed unintentionally in environment might be accumulated in various environmental media, and finally it will be influenced to human and ecosystems. Therefore, it is important to understand the fate and behavior of nanoparticles for understanding effects on environmental media (air, water, and soil phase). Therefore, in this work, we investigated the several cases for environmental exposure of nanomaterials and suggested the direction of further research. In workplace, exposure to air media is dominant, but finally waste and wastewater was moved to the water and soil phase. In addition, we found the existing sewage treatment plant was not suitable to remove completely nanomaterials in wastewater flow. To deeper study, environmental monitoring tool must be developed additionally and we suggested the several analyzing method for aged and pristine physicochemical properties of nanomaterials exposed into environmental media. This review for nanomaterials' exposure to environmental media will be helpful to investigate the environmental fate of nanomaterials and define the suitable treatment method for nano-waste.

최근 나노기술의 급격한 발전은 산업 및 바이오의약 등 다양한 분야에 새로운 활용 가능성을 제시하고 있다. 나노물질을 이용한 나노소비재의 증가와 함께 환경으로의 나노물질 노출 가능성이 제기되고 있으며, 최근 나노물질의 인체 및 환경 영향이 주요 현안으로 떠오르고 있다. 환경 중에 비의도적으로 노출된 나노물질은 다양한 환경 매질에 축적되고 언젠가는 우리들에게 재영향을 미치게 된다. 따라서, 환경 매질(대기, 수계, 토양)에 노출된 나노물질의 영향을 이해하기 위해서는 나노물질의 환경 내 거동을 이해하는 것이 중요하다. 이에 본 연구에서는 나노물질의 환경 매질별 노출 사례를 조사하고, 향후 연구 방향을 제시하고자 하였다. 작업장(실험실)에서는 주로 대기 노출이 지배적이지만, 환경중으로 노출될 경우 최종적으로 수계 및 토양으로 노출되는 것으로 파악되었다. 또한 기존의 하수처리장 설비로는 완벽하게 나노물질을 제거하기가 어렵다는 것을 확인하여, 나노폐기물 처리에 관한 새로운 방법론 개발이 절실함을 확인하였다. 보다 다양하고 깊이있는 환경 노출 연구를 위해서는 현장 모니터링 장비의 개발이 필요함을 확인할 수 있었으며, 이에 추가적으로 다양한 분석법을 제안하였다. 본 총설에서 정리한 나노물질의 환경 매질별 노출 사례 연구들은 향후 나노물질의 환경 거동 평가 및 나노폐기물의 적절한 처리방법 모색에 기본 자료로 활용될 것이다.

Keywords

References

  1. Woodrow Wilson Center, "An Inventroy of Nanotechnologybased Consumer Products Currently on the Market," The Project on Emerging Nanotechnologies, 2011.
  2. Huang, S., Chueh, P. J., Lin, Y.-W., Shih, T.-S. and Chuang, S.- M., "Disturbed Mitotic Progression and Genome Segregation are Involved in Cell Transformation Mediated by Nano-$TiO_{2}$ Long-term Exposure," Toxic. Appl. Pharm., 241, 182-194(2009). https://doi.org/10.1016/j.taap.2009.08.013
  3. Bae, E., Park, H.-J., Lee, J., Yoon, J., Kim, Y., Choi, J., Park, K., Choi, K. and Yi, J., "Bacterial Cytotoxicity of the Silver Nanoparticles Correlated with Physicochemical Metrics and Agglomeration Property," Environ. Toxic. Chem., 29, 2154-2160(2010). https://doi.org/10.1002/etc.278
  4. Lam, C.-W., James, J. T., McCluskey, R. and Hunter, R. L., "Pulmonary Toxicity of Single-wall Carbon Nanotubes in Mice 7 and 90 days After Intratracheal Instillation," Toxicol. Sci., 77, 126-134(2004).
  5. Umh, H. N., Roh, J., Park, J., Kwak, B. K., Lee, B. C., Choi, K., Yi, J. and Kim, Y., "Nano-safety Management and Exposure Assessment of Nanomaterials Producing Facilities," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 50, 112-117(2012). https://doi.org/10.9713/kcer.2012.50.1.112
  6. Barnaby J. F., "Samung's Nanotech Washer Must Follow Bugspray Rules," New York Times, 2007.
  7. Whiteley, C. M., Valle, M. D., Jones, K. C. and Sweetman, A. J., "Challegnes in Assessing the Environmental Fate and Exposure of Nano Silver," J. Phys. Confer. Series, 304, 012070(2011). https://doi.org/10.1088/1742-6596/304/1/012070
  8. Park, J., Kwak, B. K., Bae, E., Lee, J., Choi, K., Yi, J. and Kim, Y., "Exposure Assessment of Engineered Nanomaterials in the Workplace," Korean J. Chem. Eng., 26, 1630-1636(2009). https://doi.org/10.2478/s11814-009-0238-z
  9. Alvarez, P. J. J., Colvin, V., Lead, J. and Stone, V., "Research Priorties to Advance Eco-responsible Nanotechnolgy," ACS Nano, 3, 1616-1619(2009). https://doi.org/10.1021/nn9006835
  10. OECD WPMN SG8, "Preliminary Analysis of Exposure Measurement and Exposure Mitigation in Occupational Settings: Manufactured Nanomaterials," ENV/JM/MONO6 2009, 2009.
  11. OECD WPMN SG8, "Compilation and Comparison of Guidelines Related to Exposure to Nanomaterials in Laboratories," ENV/JM/MONO47 2010, 2010.
  12. Gottschalk, F., Nowack, B. and Gawlik, B., "Report on Exposure Scenarios and Release of Nanomaterials to the Environment," NANEX Work Package 5, 2010.
  13. Batley, G. E. and McLaughlin, M. J., "Fate of Manufactured Nanomaterials in the Australian Environment," National Research FLAGSHIPS, 2010.
  14. Boxall, A. B., Tiede, K. and Chaudhry, Q., "Engineered Nanomateriaqls in Soils and Water: How do They Behave and Could They Pose a Risk to Human Health?," Nanomedicine, 2, 919-927(2007). https://doi.org/10.2217/17435889.2.6.919
  15. Seiphenbusch, M., Binder, A. and Kasper, G., "Temporal Evolution of Nanoparticle Aerosols in Workplace Exposure," Ann. Occup. Hyg., 52, 707-716(2008). https://doi.org/10.1093/annhyg/men067
  16. Park, J., Kwak, B. K., Bae, E., Lee, J., Kim, Y. and Yi, J., "Characterization of Exposure to Silve Nanoparticles in the Manufacturing Facility," J. Nanopart. Res., 11, 1705-1712(2009). https://doi.org/10.1007/s11051-009-9725-8
  17. Tsai, S.-J., Hofmann, M., Hallock, M., Ada, E., Kong, J. and Ellenbecker, M., "Characterization and Evaluation of Nanoparticle Release During the Synthesis of Single-walled and Multiwalled Carbon Nanotubes by Chemical Vapor Deposition," Environ. Sci. Technol., 43, 6017-6023(2009). https://doi.org/10.1021/es900486y
  18. Brouwer, D., "Exposure to Manufactured Nanoparticles in Different Workplaces," Toxicology, 269, 120-127(2010). https://doi.org/10.1016/j.tox.2009.11.017
  19. Mueller, N. C. and Nowack, B., "Exposure Modeling of Engineered Nanoparticles in the Environment," Environ. Sci. Technol., 42, 4447-4453(2008). https://doi.org/10.1021/es7029637
  20. Rubasinghege, G., Elzey, S., Baltrusaitis, J., Jayaweera, P. M. and Grassian, V. H., "Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-dependent Nanoscale Redox Chemistry," J. Phys. Chem. Lett., 1, 1729-1737(2010). https://doi.org/10.1021/jz100371d
  21. Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. and Tufenkji, N., "Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions," Environ. Sci. Technol., 44, 6532-6549(2010). https://doi.org/10.1021/es100598h
  22. Cheng, Y., Yin, L., Lin, S., Wiesner, M., Bernhardt, E. and Liu, J., "Toxicity Reduction of Polymer-stabilized Silver Nanoparticles by Sunlight," J. Phys. Chem. C, 115, 4425-4432(2011). https://doi.org/10.1021/jp109789j
  23. Mudunkotuwa, I. A. and Grassian, V. H., "Citric Acid Adsorption on $TiO_{2}$ Nanoparticles in Aqueous Suspensions at Acidic and Circumneutral pH: Surface Coverage, Surface Speciation, and Its Impact on Nanoparticlenanoparticle Interactions," J. Am. Chem. Soc., 132, 14986-14994(2010). https://doi.org/10.1021/ja106091q
  24. Kiser, M. A., Westerhoff, P., Benn, T., Wang, Y., Perez-Rivera, J. and Hristovski, K., "Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants," Environ. Sci. Technol., 43, 6757-6763(2009). https://doi.org/10.1021/es901102n
  25. Jarvie, H. P., Al-Obaidi, H., King, S. M., Bowes, M. J., Lawrence, M. J., Drake, A. F., Green, M. A. and Dobson, P. J., "Fate of Silica Nanoparticles in Simulated Primary Wastewater Treatment," Environ. Sci. Technol., 43, 8622-8628(2009). https://doi.org/10.1021/es901399q
  26. Gottschalk, F., Sonderer, T., Scholz, R. W. and Nowack, B., "Modeled Environmental Concentrations of Engineered Nanomaterials ($TiO_{2}$, ZnO, Ag, CNT, fullerenes) for Different Regions," Environ. Sci. Technol., 43, 9216-9222(2009). https://doi.org/10.1021/es9015553
  27. Fang, J., Shan, X., Wen, B., Lin, J. and Owens, G., "Stability of Titania Nanoparticles in Soil Suspensions and Transport in Saturated Homogeneous Soil Columns," Environ. Poll., 157, 1101-1109(2009). https://doi.org/10.1016/j.envpol.2008.11.006
  28. Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wisner, M. R. and Bottero, J.-Y., "Cocurrent Aggregation and Deposition of $TiO_{2}$ Nanoparticles in a Sandy Porous Media," Environ. Sci. Technol., 44, 4897-4902(2010). https://doi.org/10.1021/es1000819
  29. Rico, C. M., Majumdar, S., Buarte-Gardea, M., Peralta-Videa, J. R. and Gardea-Torresdey, J. L., "Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain," J. Agric. Food Chem., 59, 3485-3498(2011). https://doi.org/10.1021/jf104517j
  30. Bae, E., Lee, J., Kim, Y., Choi, K. and Yi, J., "Sample Preparation and Analysis of Physico-chemical Properties for Safety Assessment of Manufactured Nanomaterials," J. Korean Soc. Environ. Anal., 12, 59-73(2009).

Cited by

  1. 카본나노튜브에 흡착된 휴믹산의 탈착에 관한 연구 vol.18, pp.7, 2013, https://doi.org/10.7857/jsge.2013.18.7.081
  2. 초친수성 유수분리필터 제조공정에 관한 전과정평가 vol.54, pp.6, 2012, https://doi.org/10.9713/kcer.2016.54.6.800
  3. Chlorella vulgaris의 흡광도, 클로로필 및 개체수 통합 영향에 근거한 중금속 및 나노입자 독성 조사 vol.23, pp.1, 2012, https://doi.org/10.7464/ksct.2017.23.1.027