DOI QR코드

DOI QR Code

Effect of Particle Size and Moisture Content of Woody Biomass on the Feature of Pyrolytic Products

급속열분해 공정에서 바이오매스의 입자크기와 수분 함량이 열분해 산물의 특성에 미치는 영향

  • Hwang, Hyewon (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Oh, Shinyoung (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Kim, Jae-Young (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Lee, Soomin (Div. wood chemistry and microbiology, Korea Forest Research Institute) ;
  • Cho, Taesu (Div. wood chemistry and microbiology, Korea Forest Research Institute) ;
  • Choi, Joon Weon (Dept. Forest Sciences, CALS, Seoul National University)
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 오신영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김재영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이수민 (국립산림과학원 화학미생물과) ;
  • 조태수 (국립산림과학원 화학미생물과) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2012.10.04
  • Accepted : 2012.11.24
  • Published : 2012.11.25

Abstract

In this study the effects of particle size and water content on the yields and physical/chemical properties of pyrolytic products were investigated through fast-pyrolysis of yellow poplar. Water content was critical parameters influencing the properties of bio-oil. The yields of bio-oil were increased with decreasing water content. However, the yield of pyrolytic product was not clearly influenced by feedstock's particle size. The water content, pH and HHV (Higher Heating Value) of bio-oil were measured to 20~30%, 2.2~2.4 and 16.6~18.5MJ/kg, respectively. The water content of feedstock was clearly influenced to water content of bio-oil. In terms of bio-char, HHV of them were measured to 26.2~30.1 MJ/kg with high content of carbon over 80%.

본 연구에서는 백합나무의 급속 열분해 공정에서 시료의 입자크기 및 함수율 조건이 열분해 산물(가스, 바이오오일, 바이오촤)의 수율과 물리 화학적 특성에 미치는 영향을 구명하였다. 시료의 함수율이 낮을수록 바이오오일의 수율은 증가하였으며 시료의 입자 크기는 수율 변화에 큰 영향을 미치지 않았다. 각 조건별로 생성된 바이오오일은 20~30%의 수분 함량과 pH 2.2~2.4, 발열량 16.6~18.5 MJ/kg의 수준을 나타내었으며 바이오오일 내 수분 함량은 높은 함수율 시료 조건에서 증가하는 것을 확인하였다. 바이오촤의 경우 80% 이상이 탄소로 이루어져있으며 발열량은 26.2~30.1 MJ/kg 수준으로 측정되었다.

Keywords

References

  1. Nemoto, T., G. Konishi, Y. Tojo, C. A. Youn, and M. Funaoka, Journal of Applied Polymer Science, 123(5): 2636-2642 (2012). https://doi.org/10.1002/app.34623
  2. Pattiya, A. and S. Suttibak, Journal of Analytical and Applied Pyrolysis, 95: 227-235 (2012). https://doi.org/10.1016/j.jaap.2012.02.010
  3. International, G., Energy [R]evolution vs. IEA World Energy Outlook scenario 2011, (2011).
  4. Patwardhan, P. R., J. A. Satrio, R. C. Brown, and B. H. Shanks, Bioresource Technology 101 (12), 4646-4655 (2010). https://doi.org/10.1016/j.biortech.2010.01.112
  5. Demirbas, A., Progress in Energy and Combustion Science, 33(1): 1-18 (2007). https://doi.org/10.1016/j.pecs.2006.06.001
  6. Wang, G., B. Q. Li, and H. K. Chen, Fuel, 87(4-5): 552-558(2008). https://doi.org/10.1016/j.fuel.2007.02.032
  7. Mohan, D., C. U. Pittman Jr, and P. H. Steele, Energy & Fuels, 20(3), 848-889 (2006). https://doi.org/10.1021/ef0502397
  8. Reijnders, L., Energy Policy, 34(7) 863-876. (2006). https://doi.org/10.1016/j.enpol.2004.09.001
  9. Sipila, K., Kuoppala, E., Fagernas, L., and A. Oasmaa, Biomass and Bioenergy, 14(2): 103-113 (1998). https://doi.org/10.1016/S0961-9534(97)10024-1
  10. Lian, J., S. Chen, S. Zhou, Z. Wang, J. O'Fallon, C. Z. Li, and Garcia-Perez, M., Bioresource Technology, 101(24), 9688-9699 (2010). https://doi.org/10.1016/j.biortech.2010.07.071
  11. Amen-Chen, C., B. Riedl, X-M. Wang, and C. Roy, Holzforschung, 56(2), 167-175 (2002).
  12. Bridgewater, A. V., Thermal Science, 8(2), 21-50 (2004). https://doi.org/10.2298/TSCI0402021B
  13. Alemdar, A. and M. Sain, Composites Science and Technology, 68(2): 557-565 (2008). https://doi.org/10.1016/j.compscitech.2007.05.044
  14. d'Almeida, A. L. F. S., D. W. Barreto, V. Calado, and J. R. M. d'Almeida, Journal of Thermal Analysis and Calorimetry, 91(2), 405-408 (2008). https://doi.org/10.1007/s10973-007-8606-6
  15. Arseneau, D. F., Canadian Journal of Chemistry, 49(4), 632-638 (1971). https://doi.org/10.1139/v71-101
  16. Nair, K. C. M., R. P. Kumar, S. C. Schit, K. Rammurthy, and S. Thomas, Composites Part A: Applied Science and Manufacturing, 31(11): 1231-1240 (2000). https://doi.org/10.1016/S1359-835X(00)00083-X
  17. Kim, K. H., I. Y. Eom, S. M. Lee, D. Choi, Y. H., I.-G. Choi, and J. W. Choi, Journal of Analytical and Applied Pyrolysis, 92(1): 2-9 (2011). https://doi.org/10.1016/j.jaap.2011.04.002
  18. Valenzuela-Calahorro, C., A. Bernalte-Garcia, V. Gómez-Serrano, Ma. J. Bernalte-García, Journal of Analytical and Applied Pyrolysis, 12(1): 61-70 (1987). https://doi.org/10.1016/0165-2370(87)80015-3
  19. Williams, P. T. and S. Besler, Renewable Energy, 7 (3): 233-250 (1996). https://doi.org/10.1016/0960-1481(96)00006-7
  20. Demirbas, A., Journal of Analytical and Applied Pyrolysis, 72(2), 243-248 (2004). https://doi.org/10.1016/j.jaap.2004.07.003
  21. Zhang, Q., J. Chang, T. Wang, and Y. Xu, Energy & Fuels, 20(6), 2717-2720 (2006). https://doi.org/10.1021/ef060224o
  22. Demirbaş, A., Fuel, 76(5), 431-434 (1997). https://doi.org/10.1016/S0016-2361(97)85520-2

Cited by

  1. Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.350
  2. A Study on Yield and Characteristics of Biocrude-oil Produced by Circulating Fluidized Bed Fast Pyrolyzer vol.35, pp.2, 2018, https://doi.org/10.9786/kswm.2018.35.2.126