DOI QR코드

DOI QR Code

Percolation Analysis On Porous Concrete Using Microstructural CT Image Processing and Probability Distribution Functions

투수 콘크리트의 미세구조 CT 이미지와 확률 분포 함수를 사용한 투수성 분석

  • 정상엽 (연세대학교 토목환경공학과) ;
  • 한동석 (연세대학교 토목환경공학과)
  • Received : 2011.10.31
  • Accepted : 2011.11.12
  • Published : 2012.02.29

Abstract

The phase distribution in concrete materials strongly affects its material properties. It is important to identify the spatial distribution of void in concrete because the void in concrete materials affects mechanical behavior and permeability significantly. Therefore, a proper method to describe the void distribution of a material is needed. In this research, CT(computed tomography) is used to examine and to quantify the void distribution of porous concrete specimens. 3D concrete digital specimens are created by subsequent stacking of 2D cross-sectional images from CT. Then, probability distribution functions such as two-point correlation, lineal-path and two-point cluster functions are used for void distribution characterization. It is confirmed that probability distribution functions obtained from CT images are effective in characterizing void distributions including the anisotropy and percolation.

콘크리트는 대표적인 다상 재료로서, 재료를 구성하는 각 성분의 공간적 분포는 콘크리트의 특성에 큰 영향을 미친다. 콘크리트에 존재하는 공극(void)은 콘크리트의 강도 및 투수성에 큰 영향을 주는 요인으로서, 콘크리트의 재료 물성의 파악을 위해 내부 공극의 분포를 파악하는 것은 매우 중요하다. 본 연구에서는 투수 콘크리트의 공극 분포 분석을 위해서 CT(computed tomography)로부터 얻은 단면 이미지를 중첩하여 3차원 콘크리트 디지털 시편을 생성, 공극 분포를 시각화(visualization)하였다. 공극 분포 상태를 확률적으로 묘사하기 위하여 확률 분포 함수들(two-point correlation function, lineal-path function과 two-point cluster function)을 사용하여 투수 콘크리트 디지털 시편의 공극 분포를 분석하였다. 그 결과, CT와 확률 분포 함수를 이용한 3차원 이미지 분석 방법을 통하여 투수 콘크리트 내부에 존재하는 공극의 공간적 분포에 대한 연속성, 투수성 및 이방성을 효과적으로 파악할 수 있음을 확인하였다.

Keywords

References

  1. 정상엽, 김영진, 윤태섭, 전현규(2011) Micro CT 이미지 분석을 통한 경량 골재 콘크리트의 공극 분포 분석, 대한토목학회논문집, 대한토목학회, 제31권 제2A호, pp. 121-127.
  2. 한국콘크리트학회(2005) 최신 콘크리트공학, 기문당, 한국콘크리트학회.
  3. Chung, S.-Y. and Han, T.-S. (2010) Reconstruction of random twophase polycrystalline solids using low-order probability functions and evaluation of mechanical behavior, Computational Materials Science, Elsevier, Vol. 49, pp. 705-719. https://doi.org/10.1016/j.commatsci.2010.06.014
  4. Coker, D.A. and Torquato, S. (1995) Extraction of morphological quantities from a digitized medium, Journal of Applied Physics, American Institute of Physics, Vol. 77, pp. 6087-6099.
  5. Corson, P.B. (1974) Correlation functions for predicting properties of heterogeneous materials. I. experimental measurement of spatial correlation functions in multiphase solids, Journal of Applied Physics, American Institute of Physics, Vol. 45, pp. 3159-3164.
  6. Gokhale, A.M., Tewari, A., and Garmestani, H. (2005) Constraint on microstructural two-point correlation functions, Scripta Materialia, Elsevier, Vol. 53, pp. 989-993. https://doi.org/10.1016/j.scriptamat.2005.06.013
  7. Han, T.-S. and Dawson, P.R. (2005) Representation of anisotropic phase morphology, Modelling and Simulation in Materials Science and Engineering, IOPscience, Vol. 13, pp. 203-223. https://doi.org/10.1088/0965-0393/13/2/004
  8. Lee, S.B. and Torquato, S. (1989) Measure of clustering in continuum percolation: Computer-simulation of the two-point cluster function, Journal of Chemical Physics, American Institute of Physics, Vol. 91, pp. 1173-1178.
  9. Lu, B. and Torquato, S. (1992) Lineal-path function for random heterogeneous materials, Physical Review A, American Physical Society, Vol. 45, pp. 922-929. https://doi.org/10.1103/PhysRevA.45.922
  10. Singh, H., Gokhale, A.M., Lieberman, S.I., and Tamirisakandala, S. (2008) Image based computations of lineal path probability distributions for microstructure representation, Materials Science and Engineering A, Elsevier, Vol. 474, pp. 104-111. https://doi.org/10.1016/j.msea.2007.03.099
  11. Tewari, A., Gokhale, A.M., Spowart, J.E., and Miracle, D.B. (2004) Quantitative characterization of spatial clustering in threedimensional microstructures using two-point correlation functions, Acta Materialia, Elsevier, Vol. 52, pp. 307-319. https://doi.org/10.1016/j.actamat.2003.09.016
  12. Torquato, S., Beasley, J.D., and Chiew, Y.C. (1988) Two-point cluster function for continuum percolation, Journal of Chemical Physics, American Institute of Physics, Vol. 88, pp. 6540-6547. https://doi.org/10.1063/1.454440
  13. Torquato, S. (2002) Random heterogeneous materials, Springer, New York.
  14. Underwood, E. (1970) Quantitative stereology, Addison-Wesley, Massachusetts.