DOI QR코드

DOI QR Code

Methane Production of Different Forages in In vitro Ruminal Fermentation

  • Meale, S.J. (The University of Sydney, Faculty of Veterinary Science) ;
  • Chaves, A.V. (The University of Sydney, Faculty of Veterinary Science) ;
  • Baah, J. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • McAllister, T.A. (Agriculture and Agri-Food Canada, Lethbridge Research Centre)
  • Received : 2011.07.27
  • Accepted : 2011.09.14
  • Published : 2012.01.01

Abstract

An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

Keywords

References

  1. Archimède, H., M. Eugène, C. Marie Magdeleine, M. Boval, C. Martin, D. P. Morgavi, P. Lecomte and M. Doreau. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 166:59-64. https://doi.org/10.1016/j.anifeedsci.2011.04.003
  2. Association of Official Analytical Chemists (AOAC). 1990. Association of Official Methods of Analysis. AOAC, Arlington, VA, USA.
  3. Beauchemin, K. A., T. A. McAllister and S. M. McGinn. 2009. Dietary mitigation of enteric methane from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 4:1-18.
  4. Boadi, D., C. Benchaar, J. Chiquette and D. Masse. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 84:319-335. https://doi.org/10.4141/A03-109
  5. Boadi, D. A. and K. M. Wittenberg. 2002. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Can. J. Anim. Sci. 82:201-206. https://doi.org/10.4141/A01-017
  6. Canadian Council on Animal Care. 1993. Guide to the care and use of experimental animals. CCAC, Ottawa, ON, Canada.
  7. Carulla, J. E., M. Kreuzer, A. Machmuller and H. D. Hess. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56:961-970. https://doi.org/10.1071/AR05022
  8. Chaves, A. V., L. C. Thompson, A. D. Iwaasa, S. L. Scott, M. E. Olson, C. Benchaar, D. M. Veira and T. A. McAllister. 2006. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J Anim. Sci. 86:409-418. https://doi.org/10.4141/A05-081
  9. Demeyer, D. I. and C. J. Van Nevel. 1975. Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In: Digestion and Metabolism in the Ruminant (Ed. I. W. Mcdonald and A. C. I. Warner). The University of New England Publishing Unit, Armidale, NSW, Australia. pp. 366-382.
  10. Doane, P. H, P. Schofield and A. N. Pell. 1997. Neutral detergent fibre disappearance and gas and volatile fatty production during the in vitro fermentation of six forages. J. Anim. Sci. 75:3342-3352.
  11. Durmic, Z., P. Hutton, D. K. Revell, J. Emms, S. Hughes and P. E. Vercoe. 2010. In vitro fermentative traits of Australian woody perennial plant species that may be considered as potential sources of feed for grazing ruminants. Anim. Feed Sci. Technol. 160:98-109. https://doi.org/10.1016/j.anifeedsci.2010.07.006
  12. Fedorak, P. M. and S. E. Hrudey. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ.Technol. Lett. 4:425-432. https://doi.org/10.1080/09593338309384228
  13. Grainger, C., T. Clarke, K. A. Beauchemin, S. M. McGinn and R. J. Eckard. 2008. Supplementation with whole cottonseed reduces methane emissions and can profitably increase milk production of dairy cows offered a forage and cereal grain diet. Aust. J. Exp. Agric. 48:73-76. https://doi.org/10.1071/EA07224
  14. Hariadi, B. T. and B. Santoso. 2010. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric. 90:456-461.
  15. Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, P. R. Cheeke and C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821. https://doi.org/10.3168/jds.2008-1843
  16. Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer and F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231-243. https://doi.org/10.1016/j.anifeedsci.2010.11.009
  17. Johnson, D. E., K. A. Johnson, G. M. Ward and M. E. Branine. 2000. Ruminants and other animals. In: Atmospheric methane: Its role in the global environment (Ed. M. A. K. Kakil). Springer-Verlag, Berlin, Germany. pp. 112-133.
  18. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
  19. Leng, R. A. 1993. Quantitative ruminant nutrition - a green science. Aust. J. Agric. Res. 44:363-380. https://doi.org/10.1071/AR9930363
  20. McAllister, T. A., E. K. Okine, G. W. Mathison and K. J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 76:231-243. https://doi.org/10.4141/cjas96-035
  21. Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. Assoc. Off. Anal. Chem. Int. 85:1217-1240.
  22. Njidda, A. A. and A. Nasiru. 2010. In vitro gas production and dry mater digestibility of tannin-containing forges of semi-arid region of north-eastern Nigeria. Pakistan J. Nutr. 9:60-66. https://doi.org/10.3923/pjn.2010.60.66
  23. Pinares-Patino, C. S., M. J. Ulyatt, G. C. Waghorn, K. R. Lassey, T. N. Barry, C. W. Holmes and D. E. Johnson. 2003. Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil. J. Agric. Sci. 140:215-226. https://doi.org/10.1017/S002185960300306X
  24. Robertson, J. B. and P. J. Van Soest. 1981. The detergent system of analysis. p. 123-158. In: The Analysis of Dietary Fibre in Food (Ed. W. P. T. James and O. Theander). Marcel Dekker, New York, NY, USA. Chapter 9.
  25. SAS Institute, Inc. 2011. $SAS OnlineDoc^{\circledR}$ 9.1.3. SAS Institute Incorporation. Cary, NC, USA.
  26. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 199-208.
  27. Tavendale, M. H., L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123:403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
  28. Valenciaga, D., B. Chongo, R. S. Herrera, V. Torres, A. Oramas and M. Herrera. 2009. Effect of regrowth age on in vitro dry matter digestibility of Pennisetum purpureum cv. CUBA CT-115. Cuban J. Agric. Sci. 43:79-82.
  29. VanKessel, J. A. S. and J. B. Russell. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20:205-210. https://doi.org/10.1111/j.1574-6941.1996.tb00319.x
  30. Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147:116-139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
  31. Wang, Y., T. A. McAllister, L. J. Yanke and P. R. Cheeke. 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88:887-896. https://doi.org/10.1046/j.1365-2672.2000.01054.x
  32. Wang, Y., Z. Xu, S. J. Bach and T. A. McAllister. 2008. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim. Feed Sci. Technol. 145:375-395. https://doi.org/10.1016/j.anifeedsci.2007.03.013
  33. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971-974. https://doi.org/10.1021/ac60252a045
  34. Wilson, J. R. and D. R. Mertens. 1995. Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop. Sci. 35:251-259. https://doi.org/10.2135/cropsci1995.0011183X003500010046x

Cited by

  1. New aspects and strategies for methane mitigation from ruminants vol.98, pp.1, 2014, https://doi.org/10.1007/s00253-013-5365-0
  2. on rumen environment, milk yield and milk composition in lactating dairy cows vol.99, pp.2, 2014, https://doi.org/10.1111/jpn.12198
  3. to reduce enteric methane emissions in sheep vol.100, pp.6, 2016, https://doi.org/10.1111/jpn.12423
  4. Greenhouse gases, short-chain fatty acids and ruminal pH in vitro of biodiesel byproducts to replace corn silage vol.16, pp.4, 2015, https://doi.org/10.1590/S1519-99402015000400017
  5. Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics vol.56, pp.3, 2016, https://doi.org/10.1071/AN15560
  6. Methanogenic potential of forages consumed throughout the year by cattle in a Sahelian pastoral area vol.56, pp.3, 2016, https://doi.org/10.1071/AN15487
  7. Forage use to improve environmental sustainability of ruminant production12 vol.94, pp.8, 2016, https://doi.org/10.2527/jas.2015-0141
  8. Analytical methods for quantifying greenhouse gas flux in animal production systems1 vol.94, pp.8, 2016, https://doi.org/10.2527/jas.2015-0017
  9. Nutrient composition and in vitro methane production of sub-tropical grass species in transitional rangeland of South Africa vol.40, pp.1, 2018, https://doi.org/10.1071/RJ17057
  10. In vitro screening of plants from the Brazilian Caatinga biome for methanogenic potential in ruminant nutrition pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3446-4
  11. The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02285
  12. Influence of feeding supplements of almond hulls and ensiled citrus pulp on the milk production, milk composition, and methane emissions of dairy cows vol.101, pp.3, 2018, https://doi.org/10.3168/jds.2017-13440
  13. Nutrient Digestibility and Greenhouse Gas Emission in Castrated Goats (Capra hircus) Fed Various Roughage Sources vol.38, pp.1, 2018, https://doi.org/10.5333/KGFS.2018.38.1.39
  14. Methanogenic potential of commonly utilised South African subtropical and temperate grass species as influenced by nitrogen fertilisation vol.70, pp.1, 2019, https://doi.org/10.1071/CP18293
  15. Effect of species on chemical composition, metabolisable energy, organic matter digestibility and methane production of oak nuts vol.44, pp.1, 2016, https://doi.org/10.1080/09712119.2015.1031774
  16. Effects of Supplementation of Piper sarmentosum Leaf Powder on Feed Efficiency, Rumen Ecology and Rumen Protozoal Concentration in Thai Native Beef Cattle vol.9, pp.4, 2019, https://doi.org/10.3390/ani9040130
  17. Methane Emissions from Ruminant Livestock in Ethiopia: Promising Forage Species to Reduce CH4 Emissions vol.9, pp.6, 2012, https://doi.org/10.3390/agriculture9060130
  18. ACALYPHA WILKESIANA regulates fluid volume but affects selected tissues in salt loaded rabbits vol.5, pp.None, 2019, https://doi.org/10.1186/s40816-019-0103-5
  19. In vivo digestibility of six selected fodder species by goats in northern Ghana vol.52, pp.2, 2012, https://doi.org/10.1007/s11250-019-01989-w
  20. Effect of supplementation with tree foliage on in vitro digestibility and fermentation, synthesis of microbial biomass and methane production of cattle diets vol.94, pp.4, 2012, https://doi.org/10.1007/s10457-019-00416-1
  21. In vitro Fermentation Profile and Methane Production of Kikuyu Grass Harvested at Different Sward Heights vol.5, pp.None, 2012, https://doi.org/10.3389/fsufs.2021.682653
  22. In vitro ruminal fermentation and enteric methane production of tropical forage added nitrogen or nitrogen plus starch vol.275, pp.None, 2021, https://doi.org/10.1016/j.anifeedsci.2021.114878
  23. In vitro ruminal fermentation and enteric methane production of tropical forage added nitrogen or nitrogen plus starch vol.275, pp.None, 2021, https://doi.org/10.1016/j.anifeedsci.2021.114878