DOI QR코드

DOI QR Code

Comparison of Ethanol Fermentation Properties between Laboratorial and Industrial Yeast Strains using Cassava Hydrolysate

카사바 당화액을 이용한 실험실용 및 산업용 효모의 에탄올 발효성능 비교

  • Chin, Young-Wook (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Jin-Woo (Department of Agricultural Biotechnology, Seoul National University) ;
  • Park, Yong-Cheol (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2012.07.30
  • Accepted : 2012.08.22
  • Published : 2012.09.28

Abstract

In order to investigate the ethanol fermentation properties of alcohol yeasts a laboratorial strain (CEN.PK2-1D) and two industrial alcohol yeasts (JHS100 and JHS200) of Saccharomyces cerevisiae were cultured in a pure YP medium with 300 g/L glucose and cassava hydrolysate. Spot assay and cell viability tests showed that both the JHS100 and JHS200 strains exhibited higher ethanol tolerance than the CEN.PK2-1D strain. The JHS100 strain demonstrated the highest cell growth, glucose consumption and ethanol production. In particular, an anaerobic batch fermentation of the JHS100 strain using cassava hydrolysate with 250 g/L glucose resulted in a 106.1 g/L ethanol concentration, 0.42 g/g ethanol yield and 3.15 g/L-hr ethanol productivity, which were 53%, 13%, 53% higher than the corresponding values for the CEN.PK2-1D strain. By changing the pure YP medium to cassava hydrolysate, 19% and 17% decreases in ethanol yield and productivity for the CEN.PK2-1D strain were observed, whereas the cultures of the JHS100 and JHS200 stains showed similar ethanol productivities and only an 8% decrease in ethanol yield. Furthermore, the JHS100 and JHS200 stains produced lower levels of glycerol and acetate byproducts than the CEN.PK2-1D strain. Consequently, the outstanding ethanol fermentation performance of the industrial strains might be owing to rapid cell growth, high ethanol tolerance, low nitrogen requirements and the low formation of by-products.

실험실용 효모 CEN.PK2-1D와 산업용 효모 JHS100와 JHS200의 ethanol 발효성능을 순수배지와 카사바 당화액에서 비교하고 발효특성을 규명하기 위해 세포성장속도와 ethanol 내성, 부산물 glycerol과 acetate의 생성에 대해 비교하였다. JHS100과 JHS200은 CEN.PK2-1D과 비교하여 세포성장이 빨랐으며 ethanol에 대한 내성이 높았다. 순수YP 배지에 300 g/L glucose를 탄소원으로 이용한 회분식 배양에서 세 효모 모두 0.46 g/g의 ethanol 생산수율을 나타냈으며 생산성은 세포성장속도가 가장 빨랐던 JHS100이 3.05 g/L-hr로 가장 높아서 최종적으로 JHS100 균주는 136.6 g/L의 ethanol을 생산하였다. 카사바 당화액에 질소원을 추가하지 않은 배지를 이용한 혐기성 회분식 배양에서 산업용 효모 JHS100은 106.1 g/L ethanol을 최종적으로 생산하였고, 0.42 g/g 생산수율과 3.15 g/L-hr 생산성을 보였다. 특히, 카사바 당화액과 순수 YP배지를 이용한 발효의 ethanol 생산변수를 비교할 경우, 실험실용 효모 CEN.PK2-1D는 생산수율과 생산성이 각각 19%와 17% 감소한 반면, 산업용 효모 JHS100과 JHS200은 생산수율이 8% 감소하였고 유사한 생산성을 보였다. 또한, ethanol 생산과정의 최대 부산물인 glycerol과 acetate의 생산에 대해서 JHS100과 JHS200이 CEN.PK2-1D에 비하여 크게 낮았다. 따라서 산업용 효모인 JHS100과 JHS200의 뛰어난 ethanol 발효성능은 빠른 세포성장과 높은 ethanol 내성, 낮은 질소원 요구성, 부산물인 glycerol과 acetate의 낮은 생산성 등에 기인하는 것으로 예상한다.

Keywords

References

  1. Bai, F. W., L. J. Chen, Z. Zhang, W. A. Anderson, and M. Moo-Young. 2004. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110: 287-293. https://doi.org/10.1016/j.jbiotec.2004.01.017
  2. Cheng, J.-S., B. Qiao, and Y.-J. Yuan. 2008. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Appl. Microbiol. Biotechnol. 81: 327-338. https://doi.org/10.1007/s00253-008-1733-6
  3. Ejiofor, A. O., Y. Chisti, and M. Moo-Young. 1996. Culture of Saccharomyces cerevisiae on hydrolyzed waste cassava starch for production of baking-quality yeast. Enzyme Microb. Tech. 18: 519-525. https://doi.org/10.1016/0141-0229(95)00166-2
  4. Jansson, C., A. Westerbergh, J. Zhang, X. Hu, and C. Sun. 2009. Cassava, a potential biofuel crop in (the) People's Republic of China. Appl. Energy 86: S95-S99.
  5. Kim, J.-W., Y.-W. Chin, Y.-C. Park, and J.-H. Seo. 2012. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae. Bioprocess Biosys. Eng. 35: 49-54. https://doi.org/10.1007/s00449-011-0590-3
  6. Lee, S.-H., T. Kodaki, Y.-C. Park, and J.-H. Seo. 2012. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J. Biotechnol. 158: 184-191. https://doi.org/10.1016/j.jbiotec.2011.06.005
  7. Maiorella, B., H. W. Blanch, and C. R. Wilke. 1983. Byproduct inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 103-121. https://doi.org/10.1002/bit.260250109
  8. Moon, S.-K., S. W. Kim, and G.-W. Choi. 2012. Simultaneous saccharification and continuous fermentation of sludgecontaining mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. J. Biotechnol. 157: 584-589. https://doi.org/10.1016/j.jbiotec.2011.06.009
  9. Pons, M.-N., A. Rajab, and J.-M. Engasser. 1986. Influence of acetate on growth kinetics and production control of Saccharomyces cerevisiae on glucose and ethanol. Appl. Microbiol. Biotechnol. 24: 193-198.
  10. Solomon, B. D., J. R. Barnes, and K. E. Halvorsen. 2007. Grain and cellulosic ethanol: History, economics, and energy policy. Biomass Bioenerg. 31: 416-425. https://doi.org/10.1016/j.biombioe.2007.01.023
  11. Sriroth, K., K. Piyachomkwan, S. Wanlapatit, and S. Nivitchan-zyong. 2010. The promise of a technology revolution in cassava bioethanol: From Thai practice to the world practice. Fuel 89: 1333-1338. https://doi.org/10.1016/j.fuel.2009.12.008
  12. Thatipamala, R., S. Rohani, and G. A. Hill. 1992. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol. Bioeng. 40: 289-297. https://doi.org/10.1002/bit.260400213
  13. Zaldivar, J. Z., A. B. Borges, B. J. Johansson, H. S. Smits, S. V.-B. Villas-Bôas, J. N. Nielsen, and L. O. Olsson. 2002. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 59: 436-442. https://doi.org/10.1007/s00253-002-1056-y

Cited by

  1. 타피오카와 겉보리 혼합원료의 당화 및 알코올 발효의 특성 연구 vol.51, pp.1, 2019, https://doi.org/10.9721/kjfst.2019.51.1.18
  2. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae vol.12, pp.None, 2012, https://doi.org/10.1186/s13068-019-1545-1