DOI QR코드

DOI QR Code

Effect of Cordycepin Purified from Cordyceps militaris on Th1 and Th2 Cytokines in Mouse Splenocytes

  • Jeong, Min-Ho (Department of Microbiology, Dong-A University College of Medicine) ;
  • Seo, Min Jeong (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Park, Jeong Uck (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kang, Byoung Won (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kim, Kyoung-Sook (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Lee, Jae Yun (Cheongweon-Industrial Farm) ;
  • Kim, Gi-Young (Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University) ;
  • Kim, Jung-In (School of Food and Life Sciences, Inje University) ;
  • Choi, Yung Hyun (Department of Biochemistry, College of Oriental Medicine, Dong-Eui University) ;
  • Kim, Kwang Hyuk (Department of Microbiology, Kosin University College of Medicine) ;
  • Jeong, Yong Kee (Department of Microbiology, Dong-A University College of Medicine)
  • Received : 2012.03.15
  • Accepted : 2012.03.31
  • Published : 2012.08.28

Abstract

Cordycepin was purified from a mushroom, Cordyceps militaris, and its effect on Th1 and Th2 cytokines was examined. The level of cytokine induction in mouse splenocytes was estimated after co-inoculation of purified cordycepin and LPS. When $5{\mu}g/ml$ of purified cordycepin was exposed to mouse splenocytes for 72 h, the level of a Th1 cytokine IL-12 increased by 2.9-fold. The addition of the purified cordycepin to splenocytes also increased the level of Th2 cytokines, IL-4 and IL-10, by 1.9- and 1.8-fold, respectively. Therefore, cordycepin increases the cytokine levels and may contribute to the up-regulation of cellular and humoral immunity.

Keywords

References

  1. Baarrett, K. E. 1996. Cytokines: Sources, receptors and signalling. Bailliere's Clin. Gastroenterol. 10: 1-15. https://doi.org/10.1016/S0950-3528(96)90036-6
  2. Bok, J. W., L. Lermer, J. Chilton, H. G. Klingeman, and G. H. Towers. 1999. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51: 891-898. https://doi.org/10.1016/S0031-9422(99)00128-4
  3. Cho, M. A., D. S. Lee, M. J. Kim, J. M. Sung, and S. S. Ham. 2003. Antimutagenicity and cytotoxicity of cordycepin isolated from Cordyceps militaris. Food Sci. Biotechnol. 12: 472-475.
  4. Choi, S. B., C. H. Park, M. K. Choi, D. W. Jun, and S. M. Park. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci. Biotechnol. Biochem. 68: 2257-2264. https://doi.org/10.1271/bbb.68.2257
  5. Cunningham, K. G., W. Manson, F. S. Spring, and S. A. Hutchinson. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.). Nature 166: 949.
  6. D'Elios, M. and G. D. Prete. 1998. Th1/Th2 balance in human disease. Transplant. Proc. 30: 2373-2377. https://doi.org/10.1016/S0041-1345(98)00659-9
  7. Hopkins, S. J. 2003. The pathophysiological role of cytokines. Legal Med. 5: S45-S57.
  8. Kodama, E. N., R. P. McCaffrey, K. Yusa, and H. Mitsuya. 2000. Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem. Pharmacol. 59: 273-281. https://doi.org/10.1016/S0006-2952(99)00325-1
  9. Muller, W. E., B. E. Weiler, R. Charubala, W. Pfleiderer, L. Leserman, R. W. Sobol, R. J. Suhadolnik, and H. C. Schroder. 1991. Cordycepin analogues of 2',5'-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry 30: 2027-2033. https://doi.org/10.1021/bi00222a004
  10. Nakamura, K., K. Konoha, N. Yoshikawa, Y. Yamaguch, S. Kagota, K. Shinozuka, and M. Kunitomo. 2005. Effect of cordycepin (3'-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo 19: 137-141.
  11. Nakamura, K., N. Yoshikawa, Y. Yamaguchi, S. Kagota, K. Shinozuka, and M. Kunitomo. 2006. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticancer Res. 26: 43-48.
  12. Ni, H., X. H. Zhou, H. H. Li, and W. F. Huang. 2009. Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. J. Chromatogr. B 877: 2135-2141. https://doi.org/10.1016/j.jchromb.2009.06.009
  13. Old, L. J. 1985. Tumor necrosis factor (TNF). Science 230: 630-632. https://doi.org/10.1126/science.2413547
  14. Sadir, R., E. Forest, and H. Lortat-Jacob. 1998. The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation. J. Biol. Chem. 273: 10919-10925. https://doi.org/10.1074/jbc.273.18.10919
  15. Schoenborn, J. R. and C. B. Wilson. 2007. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 96: 41-101.
  16. Smith, K. A., L. B. Lachman, J. J. Oppenheim, and M. F. Favata. 1980. The functional relationship of the interleukins. J. Exp. Med. 151: 1551-1556. https://doi.org/10.1084/jem.151.6.1551
  17. Sugar, A. M. and R. P. McCaffrey. 1998. Antifungal activity of 3-deoxyadenosine (cordycepin). Antimicrob. Agents Chemother. 42: 1424-1427.
  18. Thomadaki, H., A. Scorilas, C. M. Tsiapalis, and M. Havredaki. 2008. The role of cordycepin in cancer treatment via induction or inhibition of apoptosis: Implication of polyadenylation in a cell type specific manner. Cancer Chemother. Pharmacol. 61: 251-265.

Cited by

  1. Cordycepin-enriched Cordyceps militaris induces immunomodulation and tumor growth delay in mouse-derived breast cancer vol.30, pp.4, 2012, https://doi.org/10.3892/or.2013.2660
  2. Effect of Cordycepin on the Expression of the Inflammatory Cytokines TNF-alpha, IL-6, and IL-17A in C57BL/6 Mice vol.23, pp.2, 2012, https://doi.org/10.4014/jmb.1211.11032
  3. Antitumor Activity of the Protein and Small Molecule Component Fractions from Agrocybe aegerita Through Enhancement of Cytokine Production vol.17, pp.4, 2012, https://doi.org/10.1089/jmf.2013.2846
  4. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB si vol.8, pp.None, 2012, https://doi.org/10.2147/dddt.s71957
  5. Investigation of Potent Lead for Acquired Immunodeficiency Syndrome from Traditional Chinese Medicine vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/205890
  6. Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발 vol.24, pp.1, 2012, https://doi.org/10.5352/jls.2014.24.1.92
  7. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin vol.4, pp.1, 2012, https://doi.org/10.1007/s13205-013-0121-9
  8. 코디세핀이 마우스 복강 대식세포에서 전염증성 사이토카인의 생성에 미치는 영향 vol.46, pp.1, 2012, https://doi.org/10.9721/kjfst.2014.46.1.68
  9. Cordycepin prevented IL-β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes vol.38, pp.7, 2012, https://doi.org/10.1007/s00264-013-2219-4
  10. Cordyceps militarisEnhances Cell-Mediated Immunity in Healthy Korean Men vol.18, pp.10, 2012, https://doi.org/10.1089/jmf.2014.3350
  11. Systems Pharmacology-based strategy to screen new adjuvant for hepatitis B vaccine from Traditional Chinese Medicine Ophiocordyceps sinensis vol.7, pp.None, 2012, https://doi.org/10.1038/srep44788
  12. A novel protein from edible fungi Cordyceps militaris that induces apoptosis vol.26, pp.1, 2018, https://doi.org/10.1016/j.jfda.2016.10.013
  13. Effect of Cordyceps militaris Hot Water Extract on Immunomodulation-associated Gene Expression in Broilers, Gallus gallus vol.56, pp.2, 2012, https://doi.org/10.2141/jpsa.0180067
  14. Effect of ball milling time on physicochemical properties of Cordyceps militaris ultrafine particles vol.42, pp.4, 2012, https://doi.org/10.1111/jfpe.13065
  15. Prospects for Discovering the Secondary Metabolites of Cordyceps Sensu Lato by the Integrated Strategy vol.16, pp.None, 2012, https://doi.org/10.2174/1573406416666191227120425
  16. A Systematic Review of the Biological Effects of Cordycepin vol.26, pp.19, 2012, https://doi.org/10.3390/molecules26195886