Acute Toxicity of Heavy Metal (Cd, Cu, Zn) on the Hatching Rates of Fertilized Eggs in the Olive Flounder (Paralichthys olivaceus)

넙치(Paralichthys olivaceus) 수정란 부화율에 대한 중금속(Cd, Cu, Zn)의 급성독성

  • Hwang, Un-Ki (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Eclogical Risk Assessment Center) ;
  • Ryu, Hyang-Mi (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Eclogical Risk Assessment Center) ;
  • Kim, Seong-Gil (Climate & Marine Environment Team, KOEM) ;
  • Park, Seung-Yoon (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Eclogical Risk Assessment Center) ;
  • Kang, Han Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Eclogical Risk Assessment Center)
  • 황운기 (국립수산과학원 서해수산연구소 해양생태 위해평가 센터) ;
  • 류향미 (국립수산과학원 서해수산연구소 해양생태 위해평가 센터) ;
  • 김성길 (해양환경관리공단 기후해양환경팀) ;
  • 박승윤 (국립수산과학원 서해수산연구소 해양생태 위해평가 센터) ;
  • 강한승 (국립수산과학원 서해수산연구소 해양생태 위해평가 센터)
  • Received : 2012.06.05
  • Accepted : 2012.06.11
  • Published : 2012.06.30

Abstract

Acute toxicity test of heavy metal (Cd, Cu, Zn) were examined using the hatching rates of fertilized eggs in the oliver flounder, Paralichthys olivaceus. Eggs were exposed to Cd, Cu, Zn (0, 10, 100, 500, 1000, 2500, 5000 ppb) and then normal hatching rates were investigated after 48 h. The normal hatching rates in the control condition (not including Cd, Cu and Zn) were greater than 80%, but suddenly decreased with increasing of heavy metal concentrations. Cd, Cu and Zn reduced the normal hatching rates in concentration-dependent way and a significant reduction occurred at concentration grater than 1000, 100, 100 ppb, respectively. The ranking of heavy metal toxicity was Zn>Cu>Cd, with $EC_{50}$ values of 584, 1015 and 1282 ppb, respectively. The no-observed-effect-concentration (NOEC) and the lowest-observed-effect-concentration (LOEC) showed each 100 and 500 ppb of normal hatching rates in exposed to Cu and Zn. The NOEC and LOEC of normal hatching rates in Cd were 500 ppb and 1000 ppb, respectively. From these results, the normal hatching rates of P. olivaceus have toxic effect at greater than the 100 ppb concentrations in Cu, Zn and the 500 ppb concentrations in Cd in natural ecosystems. These results suggest that biological assay using the normal hatching rates of P. olivaceus are very useful test method for the acute toxicity assessment of a toxic substance as heavy metal in marine ecosystems.

넙치(Paralichthys olivaceus) 수정란의 부화율에 대한 중금속(Cd, Cu, Zn)의 급성독성을 조사하였다. Cd, Cu 및 Zn (0, 10, 100, 500, 1000, 2500, 5000 ppb)에 수정란을 48 h 노출시킨 후, 정상 부화율을 백분율로 나타내었다. Cd, Cu 및 Zn을 포함하지 않는 대조구에서는 정상 부화율이 80% 이상을 나타냈으나, 중금속 농도가 증가할수록 정상 부화율은 급격히 감소하였다. 정상 부화율은 Cd, Cu 및 Zn에 대해 농도 의존적으로 감소하였으며, 각각 1000, 100, 100 ppb 이상의 농도에서 유의적이 차이를 나타내었다. P. olivaceus의 정상 부화율에 대한 Cd, Cu 및 Zn의 반수영향농도($EC_{50}$)를 이용한 독성은 Zn>Cu>Cd 순으로 강한 것으로 나타났으며, 이들 중금속에 대한 $EC_{50}$는 각각 584, 1015, 1282 ppb를 나타내었다. Cd에 대한 NOEC는 500 ppb를 나타냈고 LOEC는 500 ppb를 나타내었다. Cu와 Zn의 NOEC와 LOEC 각각 100 ppb와 500 ppb로 유사한 값을 나타내었다. NOEC와 LOEC 결과로부터 자연생태계 내에서 Cu와 Zn 농도는 100 ppb, Cd 농도는 500 ppb를 초과할 경우 P. olivaceus 수정란의 정상 부화율은 감소할 것으로 판단된다. 본 연구결과를 바탕으로, P. olivaceus의 정상 부화율을 이용한 생물학적 시험은 중금속과 같은 유해물질에 대한 해양생태계의 영향을 판단하기 위한 시험방법으로 유용하게 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. Ahlf W, H Hollert, H Neumann-Hensel and M. Ricking. 2002. A guidance for the assessment and evaluation of sediment quality: A german approach based on ecotoxicological and chemical measurements. J. Soils Sediments 2:37-42. https://doi.org/10.1007/BF02991249
  2. Atici T, S Ahiska, A Altindag and D Aydin. 2008. Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sariyar Dam Reservoir in Turkey. Afr. J. Biotechnol. 7:1972- 1977.
  3. Bidwell JR, KW Wheeler and TR Burridge. 1998. Toxicant effects on the zoospore stage of the marine macroalga Ecklonia radiata. Mar. Ecol. Prog. Ser. 163:259-265. https://doi.org/10.3354/meps163259
  4. Choi HG, JS Park and PY Lee. 1992. Study on the heavy metal concentration in mussel and oyster from the Korean coastal water. Bull. Korean Fish. Soc. 25:485-494.
  5. Chu KW and KL Chow. 2002. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 61:53-64. https://doi.org/10.1016/S0166-445X(02)00017-6
  6. DeForest DK, KV Brix and WJ Adams. 2007. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol. 84:236- 246. https://doi.org/10.1016/j.aquatox.2007.02.022
  7. Han TJ, YS Han, GS Park and SM Lee. 2008. Development marine ecotoxicological standard methods for Ulva sporulation test. Kor. J. Soc. Ocean. 13:121-128.
  8. Hawkins WE, LG Tate and TG Sarphie. 1980. Acute effects of cadmium on the spot Leiostomus xanthurus (Teleostei): tissue distribution of renal ultrastructure. J. Toxicol. Environ. Health. 6:283-295. https://doi.org/10.1080/15287398009529852
  9. Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009. Effects of salinity and standard toxic metal (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9- 16.
  10. Hwang UK, HM Ryu, YH Choi, SM Lee and HS Kang. 2011. Effect of cobalt (II) on the fertilization and embryo development of the sea urchin (Hemicentrotus pulcherrimus). 29:251- 257.
  11. Kobayashi N. 1995. Bioassay data for marine pollution using echinoderms. Encyclpedia of Environ. Control Technol. 9:539-609.
  12. Lee JS, SM Lee and GS Park. 2008. Development of sediment toxicity test protocols using korea indigenous marine growth inhibition of marine phytoplankton. Kor. J. Soc. Ocean. 13: 147-155.
  13. Lee SH and KW Lee. 1984. Heavy metals in mussels in the Korean coastal waters, J. Oceanol. Soc. Korea 19:111-1117.
  14. Lundebye AK, MHG Berntssen, SE Wendelar and A Maage. 1999. Biochemical and physiological responses in atlantic salmon (Salmo salar) following dietary exposure to copper and cadmium. Mar. Poll. Bull. 39:137-144 https://doi.org/10.1016/S0025-326X(98)00208-2
  15. Maage A, H Sveir and K julshamn. 1989. A comparison of growth rate and trace element accumulation in Atlantic salmon (Salmo salar) fry four different commercial diets. Aquaculture 79:267-273. https://doi.org/10.1016/0044-8486(89)90467-5
  16. McGeer JC, C Szebedinszky, DG McDonald and CM Wood. 2000. Effects of chronic sublethal exposure to waterbone Cu, Cd or Zn in rainbow trout. Aquat. Toxicol. 50:231-243. https://doi.org/10.1016/S0166-445X(99)00105-8
  17. Michael M, EO Kenneth, B Patricia and G Neil. 1981. Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Mar. Pollut. Bull. 12:305-308. https://doi.org/10.1016/0025-326X(81)90081-3
  18. Novelli ELB, AM Lopes, ASE Rodrigues and BO Ribas. 1999. Superoxide redical and nephrotoxic effect of cadmium exposure. International J. Environ. Heal. Res. 9:109-116. https://doi.org/10.1080/09603129973245
  19. Park JS and GH Kim. 1979. Bioassays on marine organisms III. Acute toxicity test of mercy, copper and cadmium to Yellowtail (Quinqueradiata seriola) and Rock Bream (Oplegnathus fasciatus). Bull. Korean Fish. Soc. 12:119- 123.
  20. Pereira JJ, M Allen, C Kuropat, D Luedke and G Sennefelder. 1993. Effect of cadmium accumulation on serum vitellogenin levels and hepatosomatic and gonadosomatic indices of winter flounder (Pleuronectes americanus). Arch. Environ. Contam. Toxicol. 24:427-431. https://doi.org/10.1007/BF01146157
  21. Pereira SA, A Nascimento, H Smith, H Leite, NL deAra°ujo and A Silva. 1998. The combined effects of temperature and metals copper, zinc and mercury on the embryological development of the mangrove oyster, Crassostrea rhizophorae. Ecotoxicol. Environ. Restoration 1:21-32.
  22. Reiley MC. 2007. Science, policy and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at USEPA. Aquat. Toxicol. 84:292-298. https://doi.org/10.1016/j.aquatox.2007.05.014
  23. Viarengo A. 1985. Biochemical effects of trace metals. Mar. Pollut. Bull. 16:153-158. https://doi.org/10.1016/0025-326X(85)90006-2
  24. Yap CK, A Ismail and SG Tan. 2004. Heavy metal (Cd, Cu, Pb and Zn) concentrations in the green-lipped mussel Perna viridis collected from some wild and aquacultural sites in the west coast of Peninsular Malaysia. Food Chem. 84:569- 575. https://doi.org/10.1016/S0308-8146(03)00280-2
  25. Yu CM. 1998. A study on the effect of heavy metals on early embryos development of starfish, Kor. J. Env. Biol. 16:151- 156.