DOI QR코드

DOI QR Code

A New Coding Technique for Scalable Video Service of Digital Hologram

디지털 홀로그램의 적응적 비디오 서비스를 위한 코딩 기법

  • Received : 2011.12.15
  • Published : 2012.09.25

Abstract

In this paper, we discuss and propose a new algorithm of coding technique for scalably servicing holographic video in various decoding environment. The proposed algorithm consists of the hologram-based resolution scalable coding (HRS) and the light source-based SNR scalable coding (LSS). They are classified by the method generating and capturing hologram. HRS is a scalable coding technique for the optically captured hologram and LSS is one for the light source before generating hologram. HRS can provide the scalable service of 8 steps with the compression ratio from 1:1 to 100:1 for a $1,024{\times}1,024$ hologram. LSS can also provide the various service depending on the number of the light source division using lossless compression. The proposed techniques showed the scalable holographic video service according to the display with the various resolutions, computational power of the receiving equipment, and the network bandwidth.

본 논문에서는 다양한 재생환경에 대해 적응적으로 홀로그램 비디오를 서비스하기 위한 처리 기술에 대해서 논의하고, 새로운 알고리즘을 제안한다. 제안하는 알고리즘은 홀로그램의 생성 및 획득 방식에 따라서 해상도 스케일러블 코딩(hologram-based resolutional scalable coding, HRS) 방식과 광원 기반의 SNR 스케일러블 코딩(light source-based SNR scalable coding, LSS) 방식으로 구성된다. HRS는 이미 획득된 홀로그램에 대한 스케일러블 코딩 기법이고, LSS는 홀로그램을 만들기 이전의 광원에 대해 적용이 가능한 코딩 기법이다. $1,024{\times}1,024$ 크기의 홀로그램에 대해서 HRS는 1:1에서 100:1의 압축률을 가지면서 8 단계의 적응적인 서비스가 가능하도록 하였다. LSS는 무손실 압축 기법을 사용하면서 광원 정보의 분리개수에 따른 서비스가 가능하도록 하였다. 제안한 방식을 통해서 다양한 해상도를 갖는 디스플레이, 수신단의 연산 능력, 그리고 네트워크의 대역폭에 따라 적응적으로 홀로그래픽 비디오를 서비스할 수 있다는 것을 보였다.

Keywords

References

  1. B. Javidi and F. Okano eds, "Three Dimensional Television, Video, and Display Technologies," Springer Verlag Berlin, 2002.
  2. P. Hariharan, Basics of Holography, Cambridge University Press, 2002.
  3. 서영호, 김동윤, 배윤진, 최현준, 유지상, 김동욱, "디지털 홀로그래픽 정보의 스케일러블 전송을 위한 부호화 기법", SK Telecommunication Review, pp. 656-672, 2011. 8.
  4. F. Wu, S. Li, and Y.-Q. Zhang, "A framework for efficient progressive fine granularity scalable video coding," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp. 332-344, 2001. https://doi.org/10.1109/76.911159
  5. J. Reichel, H. Schwarz, and M. Wien, "Scalable Video Coding - Working Draft 1", Doc. JVT-N020, 2005.
  6. Young-Ho Seo, Hyun-Jun Choi, and Dong-Wook Kim, "3D Scanning-based Compression Technique for Digital Hologram Video", Elsevier Signal Processing - Image Communication, Vol.22, Issue 2, pp. 144-156. Feb. 2007. https://doi.org/10.1016/j.image.2006.11.007
  7. H. Yoshikawa and K. Sasaki, "Information reduction by limited resolution for electro -holographic display," editor SPIE Proc. Vol. 1914 Practical Holography Ⅶ, pp. 1914-1930, Feb. 1993.
  8. H. Yoshikawa and K. Sasaki, "Image Scaling for electro-holographic display," editor, SPIE Proc. vol 2176 Practical Holography VIII, paper #2176-02, pp. 12-22, Feb, 1994.
  9. H. Yoshikawa, "Digital holographic signal processing," Proc. TAO First International Symposium on Three Dimensional Image Communication Technologies, pp. S-4-2, Dec. 1993.
  10. H. Yoshikawa and J. tamai, "Holographic image compression by motion picture coding," editor, SPIE Proc. vol 2652 Practical Holography X, pp. 2652-01, Jan, 1996.
  11. T. J. Naughton and B. Javidi, "Compression of Encrypted Three-dimensional Objects using Digital Holography," Optical Engineering, vol. 43, no. 10, pp. 2233-2238, October 2004. https://doi.org/10.1117/1.1783280
  12. T. J. Naughton, Y. Frauel, E. Tajahuerce, and B. Javidi, "Compression of Digital Holograms for Three-Dimensional Object Reconstruction and Recognition," Applied Optics, vol. 41, no. 20, pp. 4124-4132, July 10, 2002. https://doi.org/10.1364/AO.41.004124
  13. M. Liebling, T. Blu and M. Unser, "Fresnelets : New multiresolution wavelet bases for digital holography," IEEE Trans. Image Process. 12, pp. 29-43, 2003. https://doi.org/10.1109/TIP.2002.806243
  14. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux and B. Javidi, "Real-time threedimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, No.29, pp. 6187-6192, Oct, 2002. https://doi.org/10.1364/AO.41.006187
  15. Young-Ho Seo, Hyun-Jun Choi, and Dong-Wook Kim, "Lossy Coding Technique for Digital Holographic Signal", SPIE Optical Engineering, Vol. 45, No. 6, pp. 065802-1-065802-10, Jun. 2006. https://doi.org/10.1117/1.2215387
  16. Young-Ho Seo, Hyun-Jun Choi, and Dong-Wook Kim, "3D Scanning-based Compression Technique for Digital Hologram Video", Elsevier Signal Processing - Image Communication, Vol.22, Issue 2, pp. 144-156. Feb. 2007. https://doi.org/10.1016/j.image.2006.11.007
  17. Young-Ho Seo, Hyun-Jun Choi, Jin-Woo Bae, Hoon-Chong Kang, Seung-Hyun Lee, Ji-Sang Yoo and Dong-Wook Kim, "A New Coding Technique for Digital Holographic Video using Multi-View Prediction", IEICE Transactions on Information and Systems, Vol.E90-D, No.1, pp.118-125, Jan. 2007. https://doi.org/10.1093/ietisy/e90-1.1.118
  18. Young-Ho Seo, Hyun-Jun Choi, Ji-Sang Yoo, and Dong-Wook Kim, "Digital hologram compression technique by eliminating spatial correlations based on MCTF," Opt. Commun. 283(21), pp. 4261-4270, 2010. https://doi.org/10.1016/j.optcom.2010.06.052
  19. Le Thanh Bang, Zulfiqar Ali, Pham Duc Quang, Jae-Hyeung Park, and Nam Kim, "Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform," Optics Express, Vol. 19 Issue 9, pp.8019-8031, 2011. https://doi.org/10.1364/OE.19.008019
  20. Young-Ho Seo, Hyun-Jun Choi, Ji-Sang Yoo, and Dong-Wook Kim, "Cell-based hardware architecture for full-parallel generation algorithm of digital holograms," Optics Express, Vol. 19 Issue 9, pp.8750-8761, 2011. https://doi.org/10.1364/OE.19.008750
  21. http://developer.nvidia.com/