DOI QR코드

DOI QR Code

Magnetic Sensor-Based Detection of Picoliter Volumes of Magnetic Nanoparticle Droplets in a Microfluidic Chip

  • Jeong, Ilgyo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Eu, Young-Jae (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Kun Woo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hu, XingHao (Department of Materials Science and Engineering, Chungnam National University) ;
  • Sinha, Brajalal (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, CheolGi (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2012.11.05
  • Accepted : 2012.11.27
  • Published : 2012.12.31

Abstract

We have designed, fabricated and tested an integrated microfluidic chip with a Planar Hall Effect (PHE) sensor. The sensor was constructed by sequentially sputtering Ta/NiFe/Cu/NiFe/IrMn/Ta onto glass. The microfluidic channel was fabricated with poly(dimethylsiloxane) (PDMS) using soft lithography. Magnetic nanoparticles suspended in hexadecane were used as ferrofluid, of which the saturation magnetisation was 3.4 emu/cc. Droplets of ferrofluid were generated in a T-junction of a microfluidic channel after hydrophilic modification of the PDMS. The size and interval of the droplets were regulated by pressure on the ferrofluid channel inlet. The PHE sensor detected the flowing droplets of ferrofluid, as expected from simulation results. The shape of the signal was dependent on both the distance of the magnetic droplet from the sensor and the droplet length. The sensor was able to detect a magnetic moment of $2{\times}10^{-10}$ emu at a distance of 10 ${\mu}m$. This study provides an enhanced understanding of the magnetic parameters of ferrofluid in a microfluidic channel using a PHE sensor and will be used for a sample inlet module inside of integrated magnetic lab-on-a-chip systems for the analysis of biomolecules.

Keywords

References

  1. P. P. Freitas, R. Ferreria, S. Cardoso, and F. Cardoso, J. Phys.: Condens. Matter 19, 165221 (2007). https://doi.org/10.1088/0953-8984/19/16/165221
  2. D. L. Graham, H. A. Ferreira, and P. P. Freitas, Trends Biotechnol. 22, 455 (2004). https://doi.org/10.1016/j.tibtech.2004.06.006
  3. B. Srinivasan, Y. Li, Y. Jing, Y. Xu, X. Yao, C. Xing, and J. Wang, Angew. Chem.-Int. Edit. 48, 2764 (2009). https://doi.org/10.1002/anie.200806266
  4. R. S. Gaster, L. Xu, S. Han, R. J. Wilson, D. A. Hall, S. J. Osterfeld, H. Yu, and S. X. Wang, Nature Nanotech. 6, 314 (2011). https://doi.org/10.1038/nnano.2011.45
  5. R. S. Gaster, D. A. Hall, C. H. Nielsen, S. J. Osterfeld, H. Yu, K. E. Mach, R. J. Wilson, B. Murmann, J. C. Liao, S. S. Gambhir, and S. X. Wang, Nature Med. 15, 1327 (2009). https://doi.org/10.1038/nm.2032
  6. Y. Li, B. Srivivasan, Y. Jing, X. Yao, M. A. Hugger, J. Wang, and C. Xing, J. Am. Chem. Soc. 132, 4388 (2010). https://doi.org/10.1021/ja910406a
  7. P. Besse, G. Boero, M. Demierre, V. Pott, and R. Popovic, Appl. Phys. Lett. 80, 4199 (2002). https://doi.org/10.1063/1.1483909
  8. W. Shen, X. Liu, D. Mazumdar, and G. Xiao, Appl. Phys. Lett. 86, 253901 (2005). https://doi.org/10.1063/1.1952582
  9. L. Ejsing, M. F. Hansen, A. K. Menon, H. A. Ferreira, D. L. Graham, and P. P. Freitas, Appl. Phys. Lett. 84, 4729 (2004). https://doi.org/10.1063/1.1759380
  10. B. Sinha, S. Anandakumar, S. Oh, and C. Kim, Sens. Actuators A 182, 34 (2012). https://doi.org/10.1016/j.sna.2012.05.001
  11. G. V. Kurlyandskaya, M. L. Sanchez, B. Hernando, V. M. Prida, P. Gorria, and M. Tejedor, Appl. Phys. Lett. 82, 3053 (2003). https://doi.org/10.1063/1.1571957
  12. R. E. Thilwind, M. Megens, J. B. A. D. van Zon, R. Coehoorn, and M. W. J. Prins, J. Magn. Magn. Mater. 320, 486 (2008). https://doi.org/10.1016/j.jmmm.2007.07.006
  13. A. Garcia-Arribas, F. Martinez, E. Fernandez, I. Ozaeta, G. V. Kurlyandskayay, A. V. Svalov, J. Berganzo, and J. M. Barandiaran, Sens. Actuators A 172, 103 (2011). https://doi.org/10.1016/j.sna.2011.02.050
  14. F. W. Osterberg, B. T. Dalslet, C. D. Damsgaard, S. C. Freitas, P. P. Freitas, and M. F. Hansen, IEEE Sensors J. 9, 682 (2009). https://doi.org/10.1109/JSEN.2009.2021122
  15. N. Pekas, M. D. Porter, M. Tondra, A. Popple, and A. Jander, Appl. Phys. Lett. 85, 4783 (2004). https://doi.org/10.1063/1.1825059
  16. J. Feng, Y. Q. Wang, F. Q. Li, H. P. Shi, and X. Chen, J. Phys.: Conf. Ser. 263, 0122002 (2011).
  17. M. Denoual, M. Harnois, S. Saez, C. Dolabdjian, and V. Senez, DOI: 10.1109/TRANSDUCERS.2011.5969140.
  18. A. R. Abate, D. Lee, T. Do, C. Holtze, and D. A. Weitz, Lab Chip 8, 516 (2008). https://doi.org/10.1039/b800001h
  19. S. Teh, R. Lin, L. Hung, and A. P. Lee, Lab Chip 8, 198 (2008). https://doi.org/10.1039/b715524g
  20. N. A. Fey, S. Peng, K. Cheng, and S. Sun, Chem. Soc. Rev. 38, 2532 (2009). https://doi.org/10.1039/b815548h

Cited by

  1. Single Magnetic Bead Detection in a Microfluidic Chip Using Planar Hall Effect Sensor vol.19, pp.1, 2014, https://doi.org/10.4283/JMAG.2014.19.1.010
  2. Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets vol.15, pp.1, 2015, https://doi.org/10.1039/C4LC01160K
  3. Supervised discriminant analysis for droplet micro-magnetofluidics vol.19, pp.2, 2015, https://doi.org/10.1007/s10404-015-1579-z