DOI QR코드

DOI QR Code

Effect of Allyl Modified/Silane Modified Multiwalled Carbon Nano Tubes on the Electrical Properties of Unsaturated Polyester Resin Composites

  • Swain, Sarojini (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Sharma, Ram Avatar (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Patil, Sandip (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Bhattacharya, Subhendu (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Gadiyaram, Srinivasa Pavan (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Chaudhari, Lokesh (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.)
  • Received : 2012.09.13
  • Accepted : 2012.10.15
  • Published : 2012.12.25

Abstract

Considering the properties of the carbon nano tubes (CNT), their inclusion into the polymer matrix vastly increases the properties of the resultant composite. However, this is not the case due to the poor interfacial adhesion of the CNT and the polymer matrix. The present approach focuses on increasing the interaction between the polymer matrix and the CNT through the chemical modification of the CNT resulting in allyl ester functionalized carbon nanotubes (ACNT) and silane functionalized carbon nano tubes (SCNT) which are capable of reacting with the polymer matrix during the curing reaction. The addition of ACNT/SCNT into unsaturated polyester resin (UPR) resulted in the improvement of the electrical properties of resulted nanocomposites in comparison to the CNT. The surface resistivity, volume resistivity, dielectric strength, dry arc resistivity, and the comparative tracking index of the nanocomposites were significantly improved in comparison to CNT. The chemical modification of CNT was confirmed via spectroscopy.

Keywords

References

  1. Zhu, H. W.; Xu, L.; Wu, D.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M.; Directly synthesis of Long Nanotubes Strands, Science, 2002, 296, 884 [DOI: http://dx.doi.org/10.1126/science.1066996].
  2. Li, Y.; Kinloch, I. A.; Windle, A. H.; Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science, 2004, 304, 276 [DOI: http://dx.doi.org/10.1126/science.1094982].
  3. Zhou, W.; Vavro, J.; Guthy, C.; Winey, K. I.; Fisher, J. E.; Smalley, R. E.; Carbon nanotubes: synthesis, structure and properties, J. Appl. Phys. 2004, 95, 649 [DOI: http://dx.doi.org/10.1063/1.1627457].
  4. M. M. Treacy, T. W. Ebessen and J. M. Gibson, Nature 381, 678 (1996) [DOI: http://dx.doi.org/10.1038/381678a0].
  5. R. Sailto, G. Dresselhaus and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998) [DOI: http://dx.doi.org/10.1016/S0921-5107(00)00444-X].
  6. S. D. Park, D. H. Haan, D. Teng, Y. Kwon and G. Y. Choi, J. KoreanPhys. Soc.48,476(2006) [DOI: http://dx.crossref.org/10.3938/jkps.48.476].
  7. S. P. Lee, H. Choi, K. W. Lee, K. H. Mo, J. W. Jang, E.Lee, I.-M. Kim and C. E. Lee, J. Korean Phys. Soc. 48,146 (2006) [DOI: http://dx.crossref.org/10.3938/jkps.48.146].
  8. Z. Li, G. Luo, F. Wei and Y. Huang, Compos. Sci. Technol. 66, 1022(2006) [DOI: http://dx.doi.org/10.1016/j.compscitech.2005.08.006].
  9. R. Sen, B. Zhao, D. E. Perea, M. E. Itkis, H. Hu, J. Love, E. Bekyarova and R. C. Haddon, Nano Lett. 4, 459 (2004) [DOI: http://pubs.acs.org/doi/abs/10.1021/nl035135s]
  10. M. A. L. Manchado, L. Valentini, J. Biagiotti and J. M. Kenny, Carbon 43, 1499 (2005) [DOI: http://dx.doi.org/10.1016/j.carbon.2005.01.031].
  11. J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao and R. C. Haddon, J. Am. Chem. Soc. 127, 3847 (2005) [DOI: http://dx.doi.org/10.1021/ja0446193].
  12. C. Park, Z. Ounaies, K. A. Watson, R. E. Crooks, J. J. Smith, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison and T. L. St. Clair, Chem. Phys. Lett. 364, 303(2002) [DOI: http://dx.doi.org/10.1016/S0009-2614(02)01326-X].
  13. Yu M.F., Files B.S., Arepalli S., Ruoff R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Physical Review Letters, 84 (24), 5552-5555 (2000) [DOI: http://link.aps.org/doi/10.1103/PhysRevLett.84.5552].
  14. Sandler J. K. W., Kirk J. E., Kinloch I. A., Sha M. S. P., Windle A. H.: Ultra-low electrical percolation threshold in carbon-nanotubeepoxy composites, Polymer, 44, 5893-5990 (2003) [DOI: http://dx.doi.org/10.1016/S0032-3861(03)00539-1].

Cited by

  1. The effect of carbon nanotubes/NiFe2O4 on the thermal stability, combustion behavior and mechanical properties of unsaturated polyester resin vol.6, pp.99, 2016, https://doi.org/10.1039/C6RA15246E
  2. Synthesis and Properties of Carbon Nanotube-Grafted Silica Nanoarchitecture-Reinforced Poly(Lactic Acid) vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070829
  3. Improving Impact Resistance of Polymer Concrete Using CNTs vol.10, pp.4, 2016, https://doi.org/10.1007/s40069-016-0165-4
  4. Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites vol.14, pp.2, 2013, https://doi.org/10.4313/TEEM.2013.14.2.53
  5. Sol-gel preparation and in vitro cytotoxic activity of nanohybrid structures based on multi-walled carbon nanotubes and silicate vol.47, pp.7, 2017, https://doi.org/10.1080/24701556.2017.1284087
  6. Elucidating How Surface Functionalization of Multiwalled Carbon Nanotube Affects Nanostructured MWCNT/Titania Hybrid Materials vol.2015, 2015, https://doi.org/10.1155/2015/952797
  7. Silane functionalization of nanodiamond for polymer nanocomposites-effect of degree of silanization vol.506, 2016, https://doi.org/10.1016/j.colsurfa.2016.06.028
  8. Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites vol.25, pp.12, 2018, https://doi.org/10.1007/s10965-018-1641-0