DOI QR코드

DOI QR Code

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses

동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계

  • Rho, TaeKeun (Department of Oceanography/Marine Research Institute, College of Natural Sciences, Pusan National University) ;
  • Lee, Tongsup (Department of Oceanography/Marine Research Institute, College of Natural Sciences, Pusan National University) ;
  • Kim, Guebuem (School of Earth & Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Chang, Kyung-Il (School of Earth & Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Na, TaeHee (BK21 School of Earth & Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kim, Kyung-Ryul (School of Earth & Environmental Sciences, College of Natural Sciences, Seoul National University)
  • 노태근 (부산대학교 자연과학대학 해양학과/해양연구소) ;
  • 이동섭 (부산대학교 자연과학대학 해양학과/해양연구소) ;
  • 김규범 (서울대학교 자연과학대학 지구환경과학부) ;
  • 장경일 (서울대학교 자연과학대학 지구환경과학부) ;
  • 나태희 (서울대학교 자연과학대학 BK21 지구환경과학 사업단) ;
  • 김경렬 (서울대학교 자연과학대학 지구환경과학부)
  • Received : 2012.05.29
  • Accepted : 2012.11.12
  • Published : 2012.12.30

Abstract

To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.

하계 울릉분지에서 관측된 SCM층은 울릉분지에만 국한되어 나타나는 것이 아니라 동해 전역에서 관측되었다. 각기 다른 시기에 관측된 여러 문헌 자료와 하계 동해 전역에서 관측된 자료에 의하면 SCM층이 나타나는 시기는 5월부터 10월 하순까지 나타나는 것으로 추정된다. SCM층 바로 상층부에 표층보다 높은 용존산소가 관측되었고, SCM층이 영양염의 농도가 급격하게 증가하는 수심에 나타나는 것으로 보아 침강이나 낮은 광량에 대한 식물플랑크톤의 생리적인 적응보다는 식물플랑크톤이 활발하게 성장하고 있음 시사한다. SCM층에서 식물플랑크톤이 오랜기간 동안 지속적으로 성장하기 위한 영양염 공급과정으로 수직 확산, 소형 및 중형동물플랑크톤의 재생산등이 중요한 역할을 하는 것으로 알려져 있다. 이들 과정은 SCM층에서 식물플랑크톤 질소 요구량의 약 50% 정도만 설명할 수 있어 SCM층의 질소 요구량에 대한 추가적인 공급기작으로는 난수성 소용돌이가 제시되었다. 그러나 난수성 소용돌이가 발달하지 않은 해역과 시기에 관측된 SCM층에 영양염은 고온 저염의 특성을 가지면서 영양염이 고갈된 표층수 아래에서 대한해협을 통해서 유입되는 영양염이 비교적 풍부한 해수가 울릉분지내로 유입되어 북상하면서 유광층까지 직접으로 상승하거나 수평이동 응력의 차이로 발생하는 난류혼합등에 의해서 추가적으로 공급되는 것으로 사료된다(Fig. 17). 그리고 동해 전역에서 5월에서 10월까지 존재하는 SCM층은 표층에서 심층으로의 유기물 수송에 상당히 기여할 것으로 사료된다.

Keywords

References

  1. 김동선, 김경희, 심정희, 유신재 (2007) 동해 울릉분지에서 봄과 여름동안 시계방향 와류가 영양염과 엽록소에 미치는 영향. 한국해양학회지 바다 12(4):280-286
  2. 노태근, 김윤배, 박정인, 이용우, 임동훈, 강동진, 이동섭, 윤승태, 김태훈, 곽정현, 박현제, 정만기, 장경일, 강창근, 서해립, 박명원, 이호정, 김경렬 (2010) 2008년 하계 울릉분지에서 관측된 물리.화학적 외압에 대한 플랑크톤 군집의 반응. Ocean and Polar Res 32(3):269-289 https://doi.org/10.4217/OPR.2010.32.3.269
  3. 문창호, 양한섭, 이광우 (1996) 동해 극전선역의 영양염류 순환과정 I. 추계 수괴와 영양염 분포와의 관계. 한국수산과학회지 29(4):503-526
  4. 문창호, 양성렬, 양한섭, 조현진, 이승룡, 김석윤 (1998) 동해 극전선의 영양염류 순환과정 IV. chlorophyll-a 분포, 신생산 및 질산염의 수직확산. 한국수산과학회지 31(2):259-266
  5. 전현덕, 노태근, 이동섭 (2012) 동해 북부해역 유광층에서 TEP 분포와 이산화탄소 인자와의 상호관련성. 한국해양학회지 바다 17(2):33-44 https://doi.org/10.7850/jkso.2012.17.2.033
  6. 정창수, 심재형, 박용철, 박상갑 (1989) 한국 동해의 기초생산력과 질소계 영양염의 동적관계. 한국해양학회지 바다 24(1):52-61
  7. Anderson GC (1969) Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol. Oceanogr 14:386- 391 https://doi.org/10.4319/lo.1969.14.3.0386
  8. Ashijian CJ, Davis CS, Scott M, Gallager M, Alatalo P (2005) Characterization of the zooplankton community, size composition, and distribution in relation to hydrography in the Japan/East Sea. Deep-Sea Res II 52:1363-1392 https://doi.org/10.1016/j.dsr2.2005.05.001
  9. Cullen JJ (1982) The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll-a. Can J Fish Aquat Sci 39(5):791-803 https://doi.org/10.1139/f82-108
  10. Eckart C (1948) An analysis of the stirring and mixing processes in incompressible fluids. J Mar Res 7(3):265- 275
  11. Holm-Hansen O, Hewes CD (2004) Deep chlorophyll-a maxima (DCMs) in Antarctic waters I. Relationships between DCMs and the physical, chemical, and optical conditions in the upper water column. Polar Biol 27(11):699-710 https://doi.org/10.1007/s00300-004-0641-1
  12. Huisman J, Thi NNP, Karl DM, Sommeijer B (2006) Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nautre 439:322-325 https://doi.org/10.1038/nature04245
  13. Hyun JH, Kim D, Shin CW, Noh JH, Yang EJ, Mok JS, Kim SH, Kim HC, Yoo S (2009) Enhanced phytoplankton and aterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung Basin, East Sea. Aquat Microb Ecol 54:45-54
  14. Ignatiades L (1979) The influence of water stability on the vertical structure of phytoplankton community. Marine Biology 52(2):97-104 https://doi.org/10.1007/BF00390416
  15. Ignoffo TR, Bollens SM, Bochdansky AB (2005) The effects of thin layers on the vertical distribution of the rotifer, Brachionus plicatilis. J Exp Mar Bio Ecol 316(2):167- 181 https://doi.org/10.1016/j.jembe.2004.11.003
  16. Kim D, Yang EJ, Kim KH, Shin CW, Park J, Yoo S, Hyun JH (2011) Impact of an anticyclonic eddy on the summer nutrient and chlorophyll a distributions in the Ulleung Basin, East Sea (Japan Sea). ICES J Mar 69(1):23-29
  17. Nagata H, Kitani K (1987) Vertical distribution of chlorophyll a along the PM line in the Japan Sea. Bull Jap Sea Reg Fish Res Lab 37:13-19
  18. Onitsuka G, Yanagi T (2005) Differences in ecosystem dynamics between the Northern and Southern parts of the Japan Sea: Analyses with two ecosystem models. J Oceanogr 61:415-433 https://doi.org/10.1007/s10872-005-0051-1
  19. Osborn T (1998) Finestructure, microstructure, and thin layers. Oceanography 11(1):36-43 https://doi.org/10.5670/oceanog.1998.13
  20. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 p
  21. Saiz E, Tiselius P, Jonsson PR, Verity P, Paffenhoer GA (1993) Experimental records of the effects of food patchiness and predation on egg production of Acartia tonsa. Limnol Oceanogr 38(2):280-289 https://doi.org/10.4319/lo.1993.38.2.0280
  22. Shim JH, Park JK (1996) Primary production system in the southern waters of the East Sea, Korea III. Vertical distribution of the phytoplankton in relation to chlorophyll maximum layer. J Korean Soc Oceanogr 31(4):196-206
  23. Shim JH, Park YC (1986) Primary productivity measurement using Carbon-14 and Nitrogenous Nutrient Dynamics in the Southeastern Sea of Korea. The Journal of the Oceanological Society of Korea 21:13-24
  24. Shim JH, Yeo HG, Park JK (1992) Primary production system in the southern waters of the East Sea, Korea I. Biomass and Productivity. J Korean Soc Oceanogr 27(2): 91-100
  25. Siswanto E, Ishizaka J, Yokouchi K (2005) Estimating chlorophyll-a vertical profiles from satellite data and the implication for primary production in the Kuroshio Front of the East China Sea. J Oceanogr 61:575-589 https://doi.org/10.1007/s10872-005-0066-7
  26. Son S, Platt T, Bouman H, Lee D, Sathyendranath S (2006) Satellite observation of chlorophyll and nutrients increase induced by Typhoon Megi in the Japan/East Sea. Geophys Res Lett 33(L05607) doi:10.1029/2005GL025065
  27. Tiselius P (1992) Behaviour of Acartia tonsa in patchy food environments. Limnol Ocearzogr 37:1640-l651 https://doi.org/10.4319/lo.1992.37.8.1640
  28. Vandevelde T, Legendre L, Therriault JC, Demers S, Bah A (1987) Subsurface chlorophyll maximum and hydrodynamics of the water column. J Mar Res 45(2):377-396 https://doi.org/10.1357/002224087788401151
  29. Wang Z, Goodman L (2010) The evolution of a thin phytoplankton layer in strong turbulence. Cont Shelf Res 30(1):104-118 https://doi.org/10.1016/j.csr.2009.08.006
  30. Weston K, Fernand L, Mills DK, Delahunty R, Brown J (2005) Primary production in the deep chlorophyll maximum of the central North Sea. J Plankton Res 27(9):909-922 https://doi.org/10.1093/plankt/fbi064

Cited by

  1. Summer primary productivity and phytoplankton community composition driven by different hydrographic structures in the East/Japan Sea and the Western Subarctic Pacific vol.119, pp.7, 2014, https://doi.org/10.1002/2014JC009874
  2. A consistent structure of phytoplankton communities across the warm–cold regions of the water mass on a meridional transect in the East/Japan Sea vol.143, 2017, https://doi.org/10.1016/j.dsr2.2017.07.001
  3. Distribution of Nutrients and Chlorophyll a in the Surface Water of the East Sea vol.19, pp.2, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.2.87
  4. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea) vol.167, 2017, https://doi.org/10.1016/j.jmarsys.2016.11.001
  5. Comparison of biochemical compositions of phytoplankton during spring and fall seasons in the northern East/Japan Sea vol.143, 2017, https://doi.org/10.1016/j.dsr2.2017.06.006
  6. Distribution of Water Masses and Distribution Characteristics of Dissolved Inorganic and Organic Nutrients in the Southern Part of the East Sea of Korea: Focus on the Observed Data in September, 2011 vol.17, pp.2, 2014, https://doi.org/10.7846/JKOSMEE.2014.17.2.90
  7. Contribution of Nutrient Flux through the Korea Strait to a Primary Production in the Warm Region of the East Sea vol.18, pp.2, 2013, https://doi.org/10.7850/jkso.2013.18.2.65
  8. Biological modulation in the seasonal variation of dissolved oxygen concentration in the upper Japan Sea pp.1573-868X, 2018, https://doi.org/10.1007/s10872-018-0497-6
  9. A single-column ocean biogeochemistry model (GOTM–TOPAZ) version 1.0 vol.12, pp.2, 2019, https://doi.org/10.5194/gmd-12-699-2019