DOI QR코드

DOI QR Code

The Synthesis and Electrochemical Performance of Microspherical Porous LiFePO4/C with High Tap Density

  • Cho, Min-Young (Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Sun-Min (Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Kwang-Bum (Department of Materials Science & Engineering, Yonsei University) ;
  • Lee, Jae-Won (Department of Energy Engineering, Dankook University) ;
  • Roh, Kwang Chul (Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology)
  • Received : 2012.08.30
  • Accepted : 2012.09.20
  • Published : 2012.09.30

Abstract

Over the past few years, $LiFePO_4$ has been actively studied as a cathode material for lithium-ion batteries because of its advantageous properties such as high theoretical capacity, good cycle life, and high thermal stability. However, it does not have a very good power capability owing to the low lithium-ion diffusivity and poor electronic conductivity. Reduction in particle size of $LiFePO_4$ to the scale of nanometers has been found to dramatically enhance the above properties, according to many earlier reports. However, because of the intrinsically low tap density of nanomaterials, it is difficult to commercialize this method. Many studies are being carried out to improve the volumetric energy density of this material and many methods have been reported so far. This paper provides a brief summary of the synthesis methods and electrochemical performances of micro-spherical $LiFePO_4$ having high volumetric energy density.

Keywords

References

  1. J. M. Tarascon and M. Armand, Nat., 414, 359 (2001). https://doi.org/10.1038/35104644
  2. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull., 15, 783 (1980). https://doi.org/10.1016/0025-5408(80)90012-4
  3. D. Guyomard and J. M. Tarascon, Adv. Mater., 6, 408 (1994). https://doi.org/10.1002/adma.19940060516
  4. A. C. Dilon, Chem. Rev., 110, 6856 (2010). https://doi.org/10.1021/cr9003314
  5. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997). https://doi.org/10.1149/1.1837571
  6. S. Y. Chung, J. T. Bloking and Y. M. Chiang, Nat. Mater., 1, 123 (2002). https://doi.org/10.1038/nmat732
  7. F. Zhou, M. Cococcioni, K. Kang and G. Ceder, Electrochem. Commun., 6, 1144 (2004). https://doi.org/10.1016/j.elecom.2004.09.007
  8. H. Huang, S. -C. Yin and L. F. Nazar, Electrochem. Solid State Lett., 4, A170 (2001). https://doi.org/10.1149/1.1396695
  9. R. Malik, D. Burch, M. Bazant and G. Ceder, Nano Lett., 10, 4123 (2010). https://doi.org/10.1021/nl1023595
  10. A. S. Andersson, B. Kalska, L. Haggström and J. O. Thomas, Solid State Ionics, 130, 41 (2000). https://doi.org/10.1016/S0167-2738(00)00311-8
  11. P. P. Prosini, M. Lisi, D. Zane and M. Pasquali, Solid State Ionics, 148, 45 (2002). https://doi.org/10.1016/S0167-2738(02)00134-0
  12. P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski and M. Pasquali, Electrochim. Acta, 48, 4205 (2003). https://doi.org/10.1016/S0013-4686(03)00606-6
  13. C. Sun, S. Rajasekhara, J. B. Goodenough and F. Zhou, J. Am. Chem. Soc, 133, 2132 (2011). https://doi.org/10.1021/ja1110464
  14. S. W. Oh, S.-T. Myung, H. J. Bang, C. S. Yoon, K. Amine and Y.-K. Sun, Electrochem. Solid State Lett., 12, A170 (2009).
  15. S. W. Oh, S.-T. Myung, S.-M. Oh, K. H. Oh, K. Amine, B. Scrosati and Y.-K. Sun, Adv. Mater., 22, 4842 (2010). https://doi.org/10.1002/adma.200904027
  16. J. Qian, M. Zhou, Y. Cao, X. Ai and H. Yang, J. Phys. Chem. C, 114, 3477 (2010). https://doi.org/10.1021/jp912102k
  17. X. Lou and Y. Zhang, J. Mater. Chem., 21, 4156 (2011). https://doi.org/10.1039/c0jm03331f
  18. H. Shu, X. Wang, Q. Wu, B. Ju, L. Liu, X. Yang, Y. Wang, Y. Bai and S. Yang, J. Electrochem. Soc., 158, A1448 (2011). https://doi.org/10.1149/2.095112jes
  19. C. Zhang, X. He, Q. Kong, H. Li, H. Hu, H. Wang, L. Gu, L. Wang, G. Cui and L. Chen, CrystEngComm., 14, 4344 (2012). https://doi.org/10.1039/c2ce25114k
  20. F. Yu, J. Zhang, Y. Yang and G. Song, J. Power Sources, 195, 6873 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.042

Cited by

  1. Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating vol.7, pp.2, 2016, https://doi.org/10.5229/JECST.2016.7.2.179
  2. Fabrication and electrochemical performance of 0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 microspheres by two-step spray-drying process vol.4, pp.1, 2014, https://doi.org/10.1038/srep05752
  3. Molten-NaNH2 Densified Graphene with In-Plane Nanopores and N-Doping for Compact Capacitive Energy Storage vol.7, pp.20, 2017, https://doi.org/10.1002/aenm.201700766