DOI QR코드

DOI QR Code

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain

KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구

  • 황영택 (충남대학교 녹색에너지기술전문대학원) ;
  • 고낙열 (한국원자력연구원) ;
  • 최종원 (한국원자력연구원) ;
  • 조성석 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2012.08.02
  • Accepted : 2012.09.27
  • Published : 2012.12.30

Abstract

Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

한국원자력연구원의 지하처분연구시설인 KURT 주변의 지하수 유동 환경과 관련하여 수집 및 분석된 자료를 바탕으로, 가상의 처분장에서 누출된 방사성 핵종의 이동 현상을 시간 영역(time domain)에서 계산하였다. KURT에서 실시된 현장 시험에서 밝혀진 수리지질학적 특성을 바탕으로 지하수 유동 모의를 실시하였고, 그 결과를 통해 파악된 지하수 유동 경로를 따라 방사성 핵종이 이동하는데 걸리는 시간은 시간 영역에서 용질 이동 모의를 하는 TDRW(Time Domain Random Walk) 방식을 통해 평가하였다. 이류(advection)와 분산(dispersion) 현상 외에 방사성 핵종의 붕괴(decay), 평형 흡착(equilibrium sorption), 암반 기질로의 확산(matrix diffusion) 현상이 용질의 이동 시간에 영향을 주는 것으로 설정되었다. 모의 결과를 통해 방사성 핵종과 지하 매질의 특성에 의한 흡착 현상, 기질 확산 현상이 핵종 이동에 미치는 영향이 분석되었으며, 방사성 핵종의 연쇄 KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구 반응에 의한 영향도 평가하였다. KURT 부지 환경에서 지표로 유출될 수 있다고 계산된 방사성 핵종의 유출량은 처분장에서 누출될 수 있는 양의 $10^{-3}$배 미만이었고, 암반 기질로의 확산 및 흡착이 고려되면 그 비율이 더욱 낮아졌다. 본 연구에서 사용된 핵종 이동 모의 방법은 방사성붕괴나 흡착, 확산 등 이동 지연 현상을 고려하면서 핵종의 이동 시간을 계산할 수 있어 안전성 평가에서 요구되는 심부 지하에서의 방사성 핵종 이동 관련 자료를 작성하는데 활용될 수 있을 것이다.

Keywords

References

  1. A. F. B. Tompson and L.W. Gelhar, "Numerical Simulation of Solute Transport in Three-Dimensional Randomly Heterogeneous Porous Media," Water Resources Research, 26(10), pp. 2541-2562 (1990). https://doi.org/10.1029/WR026i010p02541
  2. R. Yamashita and H. Kimura, "Particle Tracking Technique for Nuclide Decay Chain Transport in Fractured Porous Media", Journal of Nuclear Science and Technology, 27(11), pp. 1041-1049 (1990). https://doi.org/10.1080/18811248.1990.9731289
  3. O. Banton, F. Delay and G. Porel, "A New Time Domain Random Walk Method for Solute Transport in 1-D Heterogeneous Media", Ground Water, 35(6), pp. 1008-1013 (1997). https://doi.org/10.1111/j.1745-6584.1997.tb00173.x
  4. S.L. Painter, V. Cvetkovic and O. Pensado, "Time-Domain Random Walk Algorithm for Simulating Radionuclide Transport in Fractured Porous Rock", Nuclear Technology, 163(1), pp. 129-136 (2008a).
  5. S. Painter, V. Cvetkovic, J. Mancillas and O. Pensado, "Time-Domain Particle Tracking Methods for Simulating Transport with Retention and First-Order Transformation", Water Resources Research, 44, W01406, doi:10.1029/2007WR005944 (2008b).
  6. W.-J. Cho, S. Kwon, J.-H. Park and J.-W. Choi, "KAERI Underground Research Tunnel (KURT)", Journal of the Korean Radioactive Waste Society, 5(3), pp. 239-255 (2007).
  7. K.W. Park, Y.K. Koh, K.S. Kim and J.W. Choi, "Construction of the Geological Model around KURT area based on the surface investigations", Journal of the Korean Radioactive Waste Society, 7(4), pp. 191-205 (2009).
  8. K.W. Park, K.S. Kim, Y.K. Koh and J.W. Choi, "Synthetic Study on the Geological and Hydrogeological Model around KURT", Journal of the Korean Radioactive Waste Society, 9(1), pp. 13-21 (2011). https://doi.org/10.7733/jkrws.2011.9.1.13
  9. Korea Atomic Energy Research Institute, HLW long-term management technology development - Assessment of deep geological environmental condition for HLW disposal in Korea, KAERI Research Report, 435 p., KAERI/RR-3109/2009 (2010).
  10. Korea Atomic Energy Research Institute, Geological disposal of pyroprocessed waste from PWR spent nuclear fuel in Korea, KAERI Technical Report, 192 p., KAERI/TR-4525/2011 (2011).
  11. Korea Atomic Energy Research Institute, HLW long-term management technology development - Assessment of deep geological environmental condition, KAERI Research Report, 503 p., KAERI/RR- 2783/2006 (2007).
  12. K.S. Kim, K.W. Park, G.Y. Kim and H.J. Choi, Development of Advanced Korean Reference HLW Disposal System - Site Characteristics, KAERI Technical Report, 64 p., KAERI/TR-4265/2011 (2011).
  13. A. Kreft and A. Zuber, "On the Physical Meaning of the Dispersion Equation and Its Solution for Different Initial and Boundary Conditions", Chemical Engineering Science, 33(11), pp. 1471-1480 (1978). https://doi.org/10.1016/0009-2509(78)85196-3
  14. A. Ogata and R.B. Banks, A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media, USGS Prof. Paper 411-A, U.S. Geological Survey (1961).
  15. V. Cvetkovic, J.O. Selroos and H. Cheng, "Transport of Reactive Tracers in Rock Fractures", Journal of Fluid Mechanics, 378, pp. 335-356 (1999). https://doi.org/10.1017/S0022112098003450
  16. S. Painter and J. Mancillas, User's manual for TDRW version 2.1: radionuclide transport by timedomain random walk, 14 p., (2009)
  17. J.F. Pickens and G.E. Grisak, "Scale-dependent dispersion in a stratified granular aquifer", Water Resources Research, 17(4), pp. 1191-1211 (1981). https://doi.org/10.1029/WR017i004p01191
  18. SKB, Data report for the safety assessment SRSite, SKB Technical report, pp. 183-391, TR-10-52 (2010).

Cited by

  1. 이동 경과 시간 계산을 이용한 생물권에서의 방사성 핵종 이동 평가 방법 vol.18, pp.2, 2012, https://doi.org/10.7733/jnfcwt.2020.18.2(e).305