DOI QR코드

DOI QR Code

Application of Chitosan Preparations for Eco-friendly Control of Potato Late Blight

감자 역병의 친환경 방제를 위한 키토산 제형의 살포

  • Chang, Taehyun (Division of Ecology and Environmental System, College of Ecology & Enviromental Sciences, Kyungpook National University) ;
  • Kim, Byung Sup (Department of Applied Plant Science, Kangnung Wonju National University)
  • 장태현 (경북대학교 생태환경대학 생태환경시스템학부) ;
  • 김병섭 (강릉원주대학교 식물생명과학과)
  • Received : 2012.06.29
  • Accepted : 2012.11.30
  • Published : 2012.12.31

Abstract

Potato late blight caused by Phytophthora infestans Cooke is one of the major diseases in the cultivation of potatoes in Korea. Effect of chitosan preparations (SH-1 and SH-2) was evaluated on the inhibition of mycelial growth of P. infestans, and protective activity using detached potato leaf assay both in vivo and in the field test. SH-1 and SH-2 were showed protective activity of young plant with control values more than 95% potato late blight by inoculation with pathogens under growth chamber conditions. Mycelial growth was inhibited the radial growth over 74% at a concentration of $300{\mu}g/ml$ of both SH-1 and SH-2. Spraying with SH-1 and SH-2 on the leaves for detached leaf assay reduced disease development. The content of total polyphenol in stem was significantly increased by SH-1 and SH-2 application in the field. In field experiments, foliar application with both SH-1 and SH-2 were significantly reduced the development of late blight on potato plants. Control of late blight disease was obtained with control values of 72% and 53% by application of 1% SH-1 and SH-2, respectively, with 4 times at 7 days interval, and reduced with similar disease control values by application with 3 times at 14 days interval compared with untreated control. SH-1 and SH-2 applications increased the fresh weight of potato, and higher grade potatoes were also increased. The results showed that SH-1 and SH-2 applications can be used as eco-friendly natural fungicide for organic farming for the increase of yields and control of late blight.

감자역병은 감자재배에서 가장 중요한 병 중의 하나다. 감자역병의 친환경방제를 위하여 SH-1와 SH-2을 이용하여 감자역병균의 균사생장, 예방효과, 잎을 이용한 생물검정 및 포장시험을 통해 평가하였다. 실내에서 유묘를 이용한 시험에서 SH-1와 SH-2 제형을 살포 후 역병균을 접종 후 예방효과를 조사한 결과 95% 이상 발병을 억제하는 효과가 있었다. SH-1과 SH-2의 균사생장 억제 효과는 $300{\mu}g/ml$의 농도에서 균총의 크기를 74% 이상을 억제하였다. 잎을 이용한 생물검정에서 1% SH-1와 SH-2을 살포 후 1시간 뒤에 병원균을 접종한 결과 병의 발달을 줄였다. 감자 줄기에 총 폴리페놀 함량도 SH-1와 SH-2을 살포한 구에서 증가하였다. 포장에서 역병방제효과 시험에서 1% SH-1와 SH-2을 7일 간격 4회 살포한 처리구에서 각각 72%와 53%의 역병 방제 효과가 있었으며, 14일간 3회 살포한 구에도 유사한 병 방제효과를 보였다. 감자비대기에 1% SH-1와 SH-2 살포는 감자 생체 중을 증가시켰으며, 상품의 비율도 높았다. 이 결과에 의하면 SH-1와 SH-2의 살포는 친환경 유기농업에서 천연살균제로서 역병 방제에 사용 할 수 있으며, 감자 수확량도 증가시킬 수 있다.

Keywords

References

  1. Arlorio, M., Ludwig, A., Boller, T. and Bofante, P. 1992. Inhibition of fungal growth by plant chitinase and ${\beta}$-1, 3-glucanases. Protoplasma 171: 34-43. https://doi.org/10.1007/BF01379278
  2. Badawy, M. E. I. 2010. Structure and antimicrobial activity relationship of quaternary N-Alkyl chitosan derivatives against some plant pathogens. J. Appl. Polym. Sci. 117: 960-969. https://doi.org/10.1002/app.31492
  3. Badawy, M. E. I. and Rabea, E. I. 2009. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol. Technol. 51: 110-117. https://doi.org/10.1016/j.postharvbio.2008.05.018
  4. Barber, M. S., Bertram, R. E. and Ride, J. P. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Pathol. 34: 3-12. https://doi.org/10.1016/0885-5765(89)90012-X
  5. Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C. and Fallik, E. 2003. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot. 22: 285- 290 https://doi.org/10.1016/S0261-2194(02)00149-7
  6. Benhamou, N., Kloepper, J. W. and Tuzun, S. 1994. Induction of systemic resistance to Fusarium wilt of tomato plants by seed treatment with chitosan. Phytopathology 84: 1432-1444. https://doi.org/10.1094/Phyto-84-1432
  7. Bengamou, N. and Theriault, G. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. Radicis lycopersici. Physiol. Mol. Plant Pathol. 41: 33-52. https://doi.org/10.1016/0885-5765(92)90047-Y
  8. Bhaskara Reddy, M. V., Arul, J., Angers, P. and Couture, L. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium Graminearum and improves seed quality. J. Agric. Food Chem. 47: 1208-1216. https://doi.org/10.1021/jf981225k
  9. Bohland, C., Balkenhohl, T., Loers, G., Feussner, I. and Grambow, H. J. 1997. Differential induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan, and methyl jasmonate. Plant physiol. 114: 679-685.
  10. Chang, T. H. 2009. Disease control efficacy of chitosan preparations against tomato leaf mold. Res. Plant Dis. 15: 248-253. (In Korean) https://doi.org/10.5423/RPD.2009.15.3.248
  11. Cheah, L. H., Page, B. B. C. and Sheperd, R. 1997. Chitosan coating for inhibition of Sclerotina spp. carrots. Nz. J. Crop Horticultural Sci. 25: 89-92. https://doi.org/10.1080/01140671.1997.9513992
  12. Chen, J. Y., Wen, P. F., Kong, W. F., Pan, Q. H., Zhan, J. C., Li, J. M., Wan, S. B. and Haung, W. D. 2006. Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol. Technol. 40: 64-72. https://doi.org/10.1016/j.postharvbio.2005.12.017
  13. Choi, Y. H., Choi, G. J., Kim, B. S., Jang, K. S., Yoon, M. Y., Park, M. S. and Kim, J. C. 2011. Control of late blight of tomato and potato by oilgochitosan. Res. Plant Dis. 17: 129-135. (In Korean) https://doi.org/10.5423/RPD.2011.17.2.129
  14. Eikemo, H., Stensvand, A. and Tronsom, A. M. 2003. Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Dis. 87: 345-350. https://doi.org/10.1094/PDIS.2003.87.4.345
  15. El Ghaouth, A., Arul, J., Asselin, A. and Benhamou, N. 1992. Antifungal activity of chitosan on postharvest pathogens: Induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol. Res. 96: 769-779. https://doi.org/10.1016/S0953-7562(09)80447-4
  16. El Ghaouth, A., Smilanick, J. L., Brown, G. E., Wisniewski, M. and Wilson, C. L. 1999. Application of Candida saitoana and glycolchitosan for the control of postharvest diseases of apple and citrus fruit under semi-commercial conditions. Plant Dis. 84: 243-248.
  17. Falcon, A. B., Cabrera, J. C., Costales, D., Ramirez, M. A., Cabrera, G. and Toledo, V. 2008. The effect of size and acetylation degree of chitosan derivatives on tobacco plant protection against Phytophthora parasitica nicotianae. World J. Microbiol. Biotechnol. 24: 103-112. https://doi.org/10.1007/s11274-007-9445-0
  18. Giannakis, C., Bucheli, C. S., Skene, K. G. M., Robinson, S. P. and Scott, N. S. 1998. Chitinase and ${\beta}$-1,3-glucanase in grapevine leaves: a possible defence against powdery mildew infection. Aus. J. Grape Wine Res. 4: 14-22. https://doi.org/10.1111/j.1755-0238.1998.tb00130.x
  19. Giddings, N. J. and Berg, A. 1919. A comparison of the late blights of tomato and potato. Phytopathology 9: 209-210.
  20. Goodwin, S. B., Sujkowski, L. S. and Fry, W. E. 1996. Widespread distribution and probable origin of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and Western Canada. Phytopathology 86: 793-800. https://doi.org/10.1094/Phyto-86-793
  21. Hadwiger, L. A. and Beckman, J. M. 1980. Chitosan as a component of pea Fusarium solani interactions. Plant Physiol. 66: 205-211. https://doi.org/10.1104/pp.66.2.205
  22. Hirano, S. and Nagao, N. 1989. Effect of chitosan, pectic acid, lysozyme and chitinase on the growth of several phytopathogens. Agric. Biol. Chem. 53: 3065-3066. https://doi.org/10.1271/bbb1961.53.3065
  23. Jayaraj, J., Rahman, M., Wan, A. and Punja, Z. K. 2009. Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann. Appl. Biol. 155: 71-80. https://doi.org/10.1111/j.1744-7348.2009.00321.x
  24. Kendra, F. D. and Hadwiger, L. A. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8: 276-281. https://doi.org/10.1016/0147-5975(84)90013-6
  25. Khan, W. M., Prithiviraj, B. and Smith, D. L. 2002. Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynthetica 40: 621-624. https://doi.org/10.1023/A:1024320606812
  26. Kowalski, B., Terry, F. J., Herrera, L. and Penalver, D. A. 2006. Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res. 49: 167-176.
  27. Kumar, M. N. V. R. 2000. A review of chitin and chitosan applications. React Funct. Polym. 46: 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9
  28. Lee, K. M., Jeong, G. T. and Park, D. H. 2004. Study of antimicrobial and DPPH radical scavenger activity of wood vinegar. Korean J. Biotechnol. 19: 381-384. (In Korean)
  29. Liu, J., Tian, S., Meng, X. and Xu, Y. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol. 44: 300-306. https://doi.org/10.1016/j.postharvbio.2006.12.019
  30. Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase and ${\beta}$-1,3-glucanase. Plant Physiol. 88: 936-942. https://doi.org/10.1104/pp.88.3.936
  31. Meng, X. H., Li, B. Q., Liu, J. and Tian, S. P. 2008. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 106: 501-508. https://doi.org/10.1016/j.foodchem.2007.06.012
  32. Nam, K. W. and Kim, S. H. 2002. Effect on fruit quality and tree's main disease control by agrochemical alternatives. Korean J. Organic Agri. 10: 70-80. (In Korean)
  33. Reglinski, T., Elmer, P. A. G., Taylor, J. T., Wood, P. N. and Hoyte, S. M. 2010. Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol. 59: 882-890. https://doi.org/10.1111/j.1365-3059.2010.02312.x
  34. Romanazzi, G., Nigro, F. and Ippolito, A. 2000. Effectiveness of pre and postharvest chitosan treatments on storage decay of strawberries. Riv. fruttic. Vitic. Ortic. 62: 71-75.
  35. Vander, P., Varum, K. M., Domard, A., El Gueddari, N. E. and Moerschbache, B. M. 1998. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol. 118: 1353-1359. https://doi.org/10.1104/pp.118.4.1353
  36. Vasiukova, N. I., Zinoveva, S. V., Ilinskaia, L. I., Perekhod, E. A., Chalenko, N. G., Gerasimova, G. I., Ilina, A. V., Varlamov, P. and Zeretskovskaia, K. 2001. Modulation of plant disease by water soluble chitosan. Prikl. Biokhim. Mikrobiol. 37: 115-122.
  37. Wade, H. E. and Lamondia, J. A. 1994. Chitosan inhibits Rhizoctonia fragariae but not strawberry black root rot. Adv. Strawberry Res. 13: 26-31.
  38. Walters, D., Walsh, D., Newton, A. and Lyon, G. 2005. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95: 1368-1373. https://doi.org/10.1094/PHYTO-95-1368
  39. Xiao-juan1, S., Yang, B., Yong-cai, L., Rui-feng, H. and Yonghong, G. 2008. Postharvest chitosan treatment induces resistance in potato against Fusarium sulphureum. Agri. Sci. China 7: 615-621. https://doi.org/10.1016/S1671-2927(08)60060-7
  40. Yin, H., Bai, X., Zhao, X. and Du, Y. 2010. Oligochitosan: A plant diseases vaccine-A review. Carbohydr. Pol. 82: 1-8. https://doi.org/10.1016/j.carbpol.2010.03.066

Cited by

  1. Chitosan for Eco-friendly Control of Plant Disease vol.11, pp.2, 2017, https://doi.org/10.3923/ajppaj.2017.53.70