DOI QR코드

DOI QR Code

A Study on the Prediction of HLW Temperature from Natural Ventilation Quantity using CFD

전산유체학을 이용한 고준위 방사성 폐기물 처분장의 자연환기량에 의한 온도예측

  • 노장훈 (인하대학교 에너지 자원공학과) ;
  • 유영석 (인하대학교 에너지 자원공학과) ;
  • 장승현 (인하대학교 에너지 자원공학과) ;
  • 박선오 (인하대학교 에너지 자원공학과) ;
  • 김진 (인하대학교 에너지 자원공학과)
  • Received : 2012.12.07
  • Accepted : 2012.12.21
  • Published : 2012.12.31

Abstract

This study predicted temperature in the disposal tunnels using computational fluid dynamics based on natural ventilation quantity that comes from high altitude and temperature differences that are the characteristics of high level waste repository. The result of the previous study that evaluated quantitatively natural ventilation quantity using a hydrostatic method and CFD shows that significant natural ventilation quantity is generated. From the result, this study performed the prediction of temperature in disposal tunnels by natural ventilation quantity by the caloric values of the wastes, at both deep geological repository and surface repository. The result of analysis shows that deep geological repository is effective for thermal control in the disposal tunnels due to heat transfer to rock and the generation of sufficient natural ventilation quantity, while surface repository was detrimental to thermal control, because surface repository was strongly affected by external temperature, and could not generate sufficient natural ventilation quantity. Moreover, this study found that in the case of deep geological repository with a depth of 200 m, the heatof about $10^{\circ}C$ was transferred to the depth of 500 m. Thus, it is considered that if the high level waste repository scheduled to be built in the country is designed placing an emphasis on thermal control, deep geological repository rather than surface repository is more appropriate.

본 연구에서는 고준위 방사성 폐기물 처분장의 특징인 높은 고도차와 온도차이로 인해 발생하는 자연환기량을 바탕으로 처분터널내 온도를 전산유체학을 활용하여 예측하였다. 선행된 연구에서 Hydrostatic method와 CFD를 활용하여 자연환기량을 정량적으로 평가한 결과 상당히 큰 자연환기량이 발생이 됨을 확인하였다. 이러한 결과를 바탕으로 폐기물 발열량에 따라 발생되는 자연환기량으로 인한 처분터널내 온도예측을 실시하였으며, 처분장을 크게 심지층 처분장과 지상처분장으로 나누어 온도예측을 실시하였다. 해석결과 심지층 처분장은 암반으로의 열전달과 충분한 자연환기량의 발생으로 처분장내 온도 제어에 효과적인 반면에, 지상처분장의 경우 외부온도의 영향을 크게 받고 충분한 자연환기량을 발생시키지 못하여 온도제어에는 불리함을 확인하였다. 또한 심도 200 m 심지층 처분장의 경우 심도 500 m까지 약 $10^{\circ}C$정도의 열이 전달됨을 확인하였다. 즉, 국내에 건설예정인 고준위 방사성 폐기물 처분장을 온도제어에 중점을 두고 설계한다면 지상처분장보다는 심지층 처분장이 타당한 것으로 연구되었다.

Keywords

References

  1. Jin Kim, Sang-Ki Kwon, 2005, Ventilation system strategy for a prospective radioactive waste repository, Journal of Radioactive Waste Society, Vol. 3(2), pp. 135-148.
  2. J. W. Choi, S. K. Kwon, C. H. Kang, 2000, Disposal Concept of High Level Waste in Major Countries, Tunnel & Underground space, Vol. 10, pp. 1-16.
  3. Heui-Joon Choi, et al., 2008, Korean reference HLW disposal system, Korea Atomic energy research institute technical report, KAERI/TR-3563.
  4. Jang-hoon Roh, et al., 2011, A Study on Natural Ventilation by the Caloric Value of HLW in the Deep Geological Repository, Tunnel & underground space, Vol. 21, pp. 518-525.
  5. Office of Civilian Radioactive Waste Management (OCRWM), Yucca Mountain Project, Yucca Mountain Science and Engineering Report, DOE, USA (2002).
  6. Chan-Hoon Yoon, 2011, A field Experiment for Determination of Heat Transfet Coefficient and a Numerical Analysis to Project Temperature in a High-Level Radioactive Waste Repository, PhD's thesis of In-ha University, pp. 86-105.
  7. CHAM, PHOENICS POLIS, http://www.cham.co.uk.
  8. K.G. Gebremedhin, 2003, Characterization on flow field in a ventilated space and simulation of heat exchange between cows and their environment, Journal of Thermal Biology, Vol. 28, pp. 301-319. https://doi.org/10.1016/S0306-4565(03)00007-X

Cited by

  1. Thermal properties of a fiber-optic radiation sensor for measuring gamma-rays in high-temperature conditions vol.66, pp.1, 2015, https://doi.org/10.3938/jkps.66.46