DOI QR코드

DOI QR Code

A Study on the Model Test for Mine Filling Using Coal Ash

석탄회를 이용한 갱내충전모형시험 연구

  • 이상은 (강원대학교 삼척캠퍼스 에너지자원공학과) ;
  • 박세준 (강원대학교 삼척캠퍼스 방재대학원 광해.지질방재전공) ;
  • 김학성 (강원대학교 삼척캠퍼스 방재대학원 광해.지질방재전공) ;
  • 장항석 (한국광해관리공단 광해기술연구소 암반공학연구팀) ;
  • 김태혁 (한국광해관리공단 광해기술연구소 암반공학연구팀)
  • Received : 2012.12.12
  • Accepted : 2012.12.21
  • Published : 2012.12.31

Abstract

Coal ash generated from thermal power plants is planned to use for mine filling in order to prevent subsidence of the ground. In according, the basic physical properties and flow characteristics were grasped using coal ash from generated Yeongdong thermal power plant, and hydraulic filling experiments were performed a total of eight times by manufacturing the model of 1 inclined shaft in Hanbo coal mine. The specific gravity of coal ash is 2.34, and the result of particle size analysis belongs to silty sand (SM). Coal ash of weight ratio of 60% was used in the filling experiments of the model, since liquefaction have shown in coal ash less than weight ratio of 70% from the result of slump and flow test. The outlet should be located at the bottom of the inclined and vertical shaft, this was favorable way in improving the filling efficiency from the experiment results regardless of groundwater exists.

화력발전소에서 발생하는 석탄회를 지반침하의 방지를 위하여 갱내충전용으로 사용하고자 한다. 따라서 영동화력발전소에서 발생하는 석탄회를 이용하여 기본적인 물리적 특성 및 유동 특성을 파악하였으며, 한보탄광의 제1사갱을 대상으로 모형갱도를 제작하여 총 8회의 수압식 충전실험을 수행하였다. 석탄회의 비중은 2.34이고 입도분석결과 실트질 모래인 SM에 해당한다. Slump 시험 및 Flow 유동시험 결과 석탄회 70 wt,% 이하에서 액상형태로 나타나므로 모형충전실험에서는 석탄회 60 wt,%를 적용하였다. 모형충전시험결과 갱내수 유, 무에 상관없이 토출구를 사갱이나 수갱 바닥에 위치시키는 것이 충전효율을 향상시키는데 유리한 방법임을 확인하였다.

Keywords

References

  1. 송원경 등, 상동광산 광물찌꺼기적치장의 항구적 처리방안연구, 2007, 광해방지사업단 기술총서 2007-48, 137-215.
  2. 장윤호 등, 2001, 도계광업소 출수량 증가 원인과 대책 및 한성탄광 수갱 충전 방안, 석탄산업합리화사업단.
  3. 정영욱, 2008, 광산채굴공동 충전법 및 적용 사례, 광해방지기술, 제2권 1호, 20-28.
  4. 최금성, 1986, 부평광산 선광장재 갱내충전, 대한광산학회지, 제19권 특집 제1호, 63-69.
  5. American Concrete Institute (ACI), 1994, Controlled Low Strength Materials (CLSM), Rep. No. ACI-SP-150, ACI, Detroit.
  6. American Concrete Institute (ACI), 2005, Controlled Low Strength Materials (CLSM), Rep. No. ACI-229R-99, ACI, Detroit.
  7. Carlson, E. J., 1975, Hydraulic Model Studies for Backfilling Mine Cavities (2nd Series of Tests), U.S. Bureau Mines, Denver, Colorado, Rep. No. REC-ERC-75-3, 1-38.
  8. Changkun Chung, 1966, Sand slime filling in Sangdong Mine(I), J. of KSGE. 3.3, 142-146.
  9. Collepard, M., 2006, The New Concrete, Grafiche Tintoretto, Castrette di Villorba, Italy.
  10. Luca Bertolini, et. al., 2010, Filling of Flooded Gypsum Mine with a Flowable Soil-Cement Mix, J. of Materials in Civil Engineering, 628-636.
  11. Mehta, P. K., and Monteiro, P. J. M., 1993, Concrete: Microstructure, Properties, and Materials, 2nd Ed., Prentice- Hall, Englewood Cliffs.
  12. Neville, A. M., 1995, Properties of Concrete, Longman Scientific & Technical, Wiley, Harlow.
  13. Okamura, H. and Ouchi, M., 1999, Self-Compacting Concrete: Development, Present Use and Future, Proc., Int. Conf. Self-Compacting Concrete, RILEM, Stockholm.
  14. Sakamoto, A., et. al., 2005, An Intergrated Cavity Filling Technique For Abandoned Underground Room and Pillar Lignite Mines and Underground Quarries, Post-Mining, Nov. 16-17, Nancy, France, 1-10.
  15. Umoto, T. and Ozawa, K., 1999, Recommendation for Self-Compacting Concrete, Trans. Japan Soc. Civ. Eng., to be published.

Cited by

  1. Computational fluid dynamics simulation of coal ash filling in underground mine cavity vol.16, pp.7, 2015, https://doi.org/10.1007/s12541-015-0204-0
  2. Research and Development Trends for Mine Subsidence Prevention Technology in Korea vol.25, pp.5, 2015, https://doi.org/10.7474/TUS.2015.25.5.408
  3. Computational fluid dynamics simulations to optimize the filling of an underground mine cavity with fly ash vol.20, pp.5, 2017, https://doi.org/10.1080/12269328.2016.1262290