DOI QR코드

DOI QR Code

Isolation and Characteristics of Fucoidan Degrading Bacterium from Marine

해양으로부터 fucoidan 분해세균의 분리 및 특성

  • Lee, Yu-Ri (Department of Bio-Food Material, College of Medical & Life Sciences, Silla University) ;
  • Lim, Jong Min (Glucan Corp.) ;
  • Kim, Ki-Young (Glucan Corp.) ;
  • Mun, Sung-Bae (Glucan Corp.) ;
  • Kwak, Inseok (Department of Bioscience, College of Medical & Life Sciences, Silla University) ;
  • Sohn, Jae Hak (Department of Bio-Food Material, College of Medical & Life Sciences, Silla University)
  • 이유리 (신라대학교 의생명과학대 바이오식품소재학과) ;
  • 임종민 ((주)글루칸) ;
  • 김기영 ((주)글루칸) ;
  • 문성배 ((주)글루칸) ;
  • 곽인석 (신라대학교 의생명과학대 생물과학과) ;
  • 손재학 (신라대학교 의생명과학대 바이오식품소재학과)
  • Received : 2012.11.15
  • Accepted : 2012.12.21
  • Published : 2012.12.30

Abstract

A marine bacterial strain that degraded fucoidan from Ecklonia cava was isolated from seawater. The crude fucoidanase of this strain efficiently degraded fucoidan at pH 8 and $50^{\circ}C$. The crude enzyme hydrolyzed 7.1% (w/w) fucoidan within 24 hrs from an 1% (w/v) fucoidan solution and produced oligosaccharides by endo-type hydrolysis as the reaction products. The results of 16S rRNA gene sequence analysis and biochemical tests permitted a tentative identification of strain SB 1493 as a Pseudoalteromonas species.

Ecklonia cava로부터 얻어진 fucoidan을 분해하는 해양세균은 해수로부터 분리하였다. 이 균주의 조효소는 pH8과 $50^{\circ}C$에서 fucoidan을 효율적으로 분해하였다. Crude fucoidanase는 1% (w/v) fucoidan 반응액에서 24시간 내에 약 7.1%를 가수분해하였으며 반응산물로서 endo-type 가수분해에 의한 oligosaccharide를 생산하였다. 16S rRNA 유전자 염기서열분석과 생화학적 시험의 결과로부터 SB 1493균주는 잠정적으로 Pseudoalteromonas sp.로 동정하였다.

Keywords

References

  1. Altschul, S. F., Miller, G. W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Bakunina, I. Y., Nedashkovskaya, O. I., Alekseeva, S. A., Ivanova , E. P., Romanenko, L. A., Gorshkova, N. M. Sakov, V. V. Zvyagintseva, T. N. and Mikhailov, V. V. 2002. Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Microbiology 71, 41-47. https://doi.org/10.1023/A:1017994131769
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A. and Boisson-Vidal, C. 1999. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr. Res. 319, 154-165. https://doi.org/10.1016/S0008-6215(99)00127-5
  5. Descamps, V., Colin, S., Lahaye, M., Jam, M., Richard, C., Potin, P., Barbeyron, T., Yvin, J. C. and Kloareg, B. 2004. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar. Biotech. 8, 1-13.
  6. Do, H., Kang, N. S., Pyo, S., Billiar, T. R. and Sohn, E. H. 2010. Differential regulation by fucoidan of IFN-induced NO production in glial cells and macrophages. J. Cell. Biochem. 111, 1337-1345. https://doi.org/10.1002/jcb.22860
  7. Felsenstein, J. 1993. PHYLIP (phylogenetic interference package), version 3.2. University of Washington, Seattle.
  8. Fujikawa, T., Koyabu, K. and Wada, M. 1979. Enzymes in hepatopancreas of abalone active on fucoidan (1), crude enzyme and unabsorbed fraction on CM-cellulose. Nippon Nogei Kagakukaishi 53, 87-95. https://doi.org/10.1271/nogeikagaku1924.53.3_87
  9. Furukawa, S., Fujikawa, T. K. D. and Ide, A. 1992a. Production of fucoidan-degrading enzymes, fucoidanase, and fucoidan sulfatase by Vibrio sp. N-5. Nippon Suisan Gakkaishi 58, 1499-1503. https://doi.org/10.2331/suisan.58.1499
  10. Hemmingson, J. A., Falshaw, R., Furneaux, R. H. and Thompson, K. 2006. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J. Appl. Phycol. 18, 185-193. https://doi.org/10.1007/s10811-006-9096-9
  11. Kaneko, T., Nozaki, R. and Aizawa, K. 1978. Deoxyribonucleic acid relatedness of Bacillus anthracus, Bacillus cereus, and Bacillus thuringenesis. Microbiol. Immunol. 22, 639-641. https://doi.org/10.1111/j.1348-0421.1978.tb00414.x
  12. Kang, S.-M., Kim, K.-N., Lee, S.-H., Ahn, G., Cha, S.-H., Kim, A.-D., Yang, X.-D., Kang, M.-C. and Jeon, Y.-J. 2011. Antiinflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW264.7 macrophages. Carbohydrate Polymers 85, 80-85. https://doi.org/10.1016/j.carbpol.2011.01.052
  13. Kim, W.-J., Kim, S.-M., Yoon, Y.-H., Kim, H. G., Kim, H.-K., Moon, S. H., Suh, H.-H., Jang, K.-H. and Park, Y.-I. 2008. Isolation and characterization of marine bacterial strain degrading fucoidan from Korean Undaria pinnatifida sporophylls. J. Microbiol. Biotechnol. 18, 616-623.
  14. Kim, D. S., Lim, D. J., Moon, S.-H., Suh, H.-H. and Park, Y.-I. 2004. Purification of fucoidan from Korean Sea Tangle (Lacminaria religosa) and isolation of fucoidan-degrading microorganisms. Kor. J. Microbiol. Biotechnol. 32, 362-365.
  15. Kwon, S.-J., Ahn, T.-Y. and Sohn, J. H. 2011. Analysis of microbial diversity in Makgeolli fermentation using PCR-DGGE. J. Life Sci. 22, 232-238. https://doi.org/10.5352/JLS.2012.22.2.232
  16. Kitamura, K., Masaru, M. and Yasui, T. 1992. Enzymic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis. Biosci. Biotechnol. Biochem. 56, 490-494. https://doi.org/10.1271/bbb.56.490
  17. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  18. Mourao, P. A. S. 2004. Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr. Pharm. Des. 10, 967-981. https://doi.org/10.2174/1381612043452730
  19. Nishino, T., Nishioka, C., Ura, H. and Nagumo, T. 1994. Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res. 255, 213-224. https://doi.org/10.1016/S0008-6215(00)90980-7
  20. Nishino, T., Yamauchi, T., Horie, M., Nagumo, T. and Suzuki, H. 2000. Effects of a fucoidan on the activation of plasminogen by u-PA and t-PA. Thromb. Res. 99, 623-634. https://doi.org/10.1016/S0049-3848(00)00289-9
  21. Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N. and Teixeira, J. A. 2010. Fucoidan-degrading fungal strains: screening, morphometric evaluation, and influence of medium composition. Appl. Biochem. Biotechnol. 162, 2177-2188. https://doi.org/10.1007/s12010-010-8992-2
  22. Ryu, B.-H., Kim, D. S. and Lee, Y. S. 1996. Characterization of fucoidanase screened from the Hepatopancreas of Patinopexten yessoensis. J. Fd. Hyg. Safety 11, 25-29.
  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  24. Sakai, T., Kimura, H. and Kato, I. 2002. A marine strain of flavobacteriaceae utilizes brown seaweed fucoidan. Mar. Biotechnol. 4, 399-405. https://doi.org/10.1007/s10126-002-0032-y
  25. Sakai, T., Ishizuka, K. and Kato, I. 2003a. Isolation and characterization of a fucoidan-degrading marine bacterium. Mar. Biotechnol. 5, 409-416. https://doi.org/10.1007/s10126-002-0118-6
  26. Sakai, T., Ishizuka, K., Shimanaka, K., Ikai, K. and Kato, I. 2003b. Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Mar. Biotechnol. 5, 536-544. https://doi.org/10.1007/s10126-002-0107-9
  27. Sakai, T., Kimura, H. and Kato, I. 2003c. Purification of sulfated fucoglucuronomannan lyase from bacterial strain of Fucobacter marina and study of appropriate conditions for its enzyme digestion. Mar. Biotechnol. 5, 380-387. https://doi.org/10.1007/s10126-002-0083-0
  28. Sakai, T., Kawai, T. and Kato, I. 2004. Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase. Mar. Biotechnol. 6, 335-346. https://doi.org/10.1007/s10126-003-0033-5
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  30. Urvantseva, A., Bakunina, I., Nedashkovskaya, O., Kim, S. and Zvyagintseva, T. 2006. Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae. Appl. Biochem. Microbiol. 42, 484-491. https://doi.org/10.1134/S0003683806050073
  31. Wijesinghe, W. A. J. P., Athukorala, Y. and Jeon, Y. J. 2011. Effect of anticoagulative sulfated polysaccharide purified from enzyme-assistant extract of a brown seaweed Ecklonia cava on Wistar rats. Carbohydrate Polymers 86, 917-921. https://doi.org/10.1016/j.carbpol.2011.05.047
  32. Wu, Q., Zhang, M., Wu, K., Liu, B., Cai, J. and Pan, R. 2011. Purification and characteristics of fucoidanase obtained from Dendryphiella arenaria TM94. J. Appl. Phycol. 23, 197-203. https://doi.org/10.1007/s10811-010-9588-5
  33. Yaphe, W. and Morgan, K. 1959. Enzymic hydrolysis of fucoidin by Pseudomonas atlantica and Pseudomonas carrageenovora. Nature 183, 761-762.