DOI QR코드

DOI QR Code

A Study for a Reasonable Application of the SWMM to Watershed Runoff Event Simulation

SWMM을 이용한 홍수유출 모의의 합리적 적용에 관한 연구

  • Kang, Taeuk (Department of Civil Engineering, Pukyong National University) ;
  • Lee, Sangho (Department of Civil Engineering, Pukyong National University)
  • 강태욱 (부경대학교 대학원 토목공학과) ;
  • 이상호 (부경대학교 토목공학과)
  • Received : 2012.08.13
  • Accepted : 2012.11.05
  • Published : 2012.12.31

Abstract

Rainfall runoff process differs depending on if it occurs in a rural area or an urban area. While surface flow is dominant in an urban area, in a rural area, groundwater flow is also important. However, in Korea, most studies for a watershed runoff event simulation by the storm water management model (SWMM) have used only the surface flow module regardless of the runoff characteristics for a basin. The purpose of the study is to evaluate application results of the SWMM for a rural area and to suggest the necessity of considering runoff characteristics of a basin in a watershed runoff event simulation. Two basins, which can represent urban and rural areas, are selected: the Guro 1 Pumping Station Basin and the Milyang Dam Basin. Watershed runoff event simulations were conducted by including the groundwater module of the SWMM and the results were derived by an automatic calibration. The calibration results for the watershed runoff event simulation model of the Guro 1 Pumping Station Basin were quite similar to the observed hydrograph, even when the groundwater module is not included. On the other hand, calibration results for the watershed runoff event simulation model of the Milyang Dam Basin were poorly done when the groundwater module is not considered. When we derived the calculated runoff hydrograph by the watershed runoff event simulation model with the groundwater module for the Milyang Dam Basin, the results were well fitted into the observed data. Thus, runoff characteristics should be considered for a watershed runoff event simulation by the SWMM.

도시유역과 전원유역의 유출 형태는 서로 상이하다. 도시유역에서는 지표면 유출이 지배적인 반면, 전원유역의 경우 지표면 유출은 물론 지하수 유출도 큰 비중을 차지한다. 하지만 우리나라에서는 SWMM을 이용한 홍수유출 해석 시, 대상유역의 유출 특성을 고려하지 않고 지표면 유출만을 모의한 사례가 대부분이다. 본 연구의 목적은 전원유역에 대한 SWMM의 적용성을 평가하고, 유역의 유출 특성을 고려한 홍수유출 모의의 필요성을 제시하는데 있다. 이를 위해 모형 적용의 대상유역을 도시유역인 구로1 빗물펌프장 배수유역과 전원유역인 밀양댐 배수유역의 두 곳으로 선정하였다. 홍수유출 모의는 SWMM의 지하수 유출 계산 모듈의 포함 유무에 따라 수행되었고, 홍수유출 모의의 적절성은 자동 보정을 통해 검토되었다. 그 결과, 도시유역인 구로1 빗물펌프장 배수유역에서는 홍수유출 모의 시 지하수 모듈을 고려하지 않더라도 비교적 관측 수문곡선을 잘 모사하였다. 반면에 유역의 대부분이 투수 지역인 밀양댐 배수유역에서는 지하수 유출 계산 모듈을 고려하지 않을 경우, 계산된 수문곡선의 오차는 매우 크게 나타났다. 이와 달리, 밀양댐 배수유역의 홍수유출 모의 모형에 지하수 모듈을 고려할 경우, 계산된 결과는 관측자료를 잘 모사하였다. 따라서 SWMM을 이용한 홍수유출 해석 시 대상유역의 유출 특성을 고려할 필요가 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Barco, J., Wong, K.M., and Stenstrom, M.K. (2008) Automatic calibration of the U.S. EPA SWMM model for a large urban catchment, Journal of Hydraulic Engineering, Vol. 134, No. 4, pp. 466-474. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466)
  2. Chen, A.S., Hsu, M.H., Teng, W.H., Huang, C.J., Yeh, S.H., and Lien, W.Y. (2006) Establishing the database of inundation potential in Taiwan, Natural Hazards, Springer, Vol. 37, pp. 107-132. https://doi.org/10.1007/s11069-005-4659-7
  3. Cho, J., and Lee, J. (2006) Parameter optimization for runoff calibration of SWMM, Journal of Environmental Impact Assessment, Korean Society Environmental Impact Assessment, Vol. 15, No. 6, pp. 435-441.
  4. Cho, M.O., Yoon, J.Y., Jang, S.H., and Yoon, Y.N. (2007) An analysis of flood runoff variations due to watershed development using SWMM, Journal of the Korean Society of Civil Engineers, Korean Society of Civil Engineers, Vol. 27, No. 2B, pp. 125-132.
  5. Duan, Q. (1991) A global optimization strategy for efficient and effective calibration of hydrologic models, Ph.D. dissertation, University of Arizona, Tucson, Arizona, USA.
  6. Duan, Q., Gupta, V., and Sorooshian, S. (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models, Journal of Hydrology, Vol. 158, pp. 265-284. https://doi.org/10.1016/0022-1694(94)90057-4
  7. Duan, Q., Sorooshian, S., and Gupta, V. (1992) Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resources Research, Vol. 28, No. 4, pp. 1015-1031. https://doi.org/10.1029/91WR02985
  8. Hsu, M.H., Chen, S.H., and Chang, T.J. (2000) Inundation simulation for urban drainage basin with strom sewer system, Journal of Hydrology, Vol. 234, pp. 21-37. https://doi.org/10.1016/S0022-1694(00)00237-7
  9. Huber, W.C., and Dickinson, R.E. (1992) Storm Water Management Model, Version 4: User's Manual, EPA/600/3-88/001a, U.S. Environmental Protection Agency, Athens, Georgia.
  10. James, W., Huber, W.C., Dickinson, R.E., Pitt, R.E., James, W.R.C., Roesner, L.A., and Aldrich, J.A. (2005) User's guide to SWMM, CHI, Ontario, Canada.
  11. Javaheri, H. (1998) Automatic calibration of urban run-off models using global optimization techniques, M.Sc. thesis, McGill University, Montreal, Canada.
  12. Kang, T., Lee, S., Kang, S., and Park, J. (2012) A study for an automatic calibration of urban runoff model by the SCE-UA, Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 45, No. 1, pp. 15-27. https://doi.org/10.3741/JKWRA.2012.45.1.15
  13. Kim, D.H. (2001) A study on the runoff characteristic analysis of experiment catchment using the SWMM model, M.Sc. thesis, Dong Eui University, Busan, Korea.
  14. Kim, K.U., Kim, S.D., and Kim, C.S. (2012) A analysis model for urban flooding hazard zone based on the SWMM simulation historical DB, Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 12, No. 1, pp. 217- 222. https://doi.org/10.9798/KOSHAM.2012.12.6.217
  15. Lee, H.J., Jang, C.D., and Jun, K.W. (2011) Numerical simulations of inundation area using XP-SWMM, Journal of Safety and Crisis Management, Crisis and Emergency Management: Theory and Praxis, Vol. 7, No. 2, pp. 75-86.
  16. Lee, J.H, and Yeon, K.S. (2008) Flood inundation analysis using XP-SWMM model in urban area, Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 8, No. 5, pp. 155-161.
  17. Rossman, L.A. (2009) Storm Water Management Model User's Manual Version 5.0, EPA/600/R-05/040, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio.
  18. Shin, S.C., Yim, T.K., Moon, Y.J., and Yoon, Y.S. (2007) Analysis of flood discharge in urban area, Proceedings of the Korea Water Resources Association Conference, Korea Water Resources Association, pp. 356-360.
  19. Shinma, T.A., and Reis, L.F.R. (2011) Multiobjective automatic calibration of the storm water management model (SWMM) using non-dominated sorting genetic algorithm II (NSGA-II), World Environmental and Water Resources Congress 2011, Palm Springs, CA, pp. 598-607.

Cited by

  1. Estimation of Stream Water Quality Changes Brought by a New Town Development vol.36, pp.1, 2014, https://doi.org/10.4491/KSEE.2014.36.1.58
  2. Development on an Automatic Calibration Module of the SWMM for Watershed Runoff Simulation and Water Quality Simulation vol.47, pp.4, 2014, https://doi.org/10.3741/JKWRA.2014.47.4.343