DOI QR코드

DOI QR Code

A Study on the strength of the Bolted Joint & Pin Joint with Hole Clearance

원공공차를 가진 볼트 조인트와 핀 조인트의 강도평가에 관한 연구

  • 정강우 (경상대학교 기계공학부 기계설계학전공 대학원) ;
  • 최진호 (경상대학교 기계공학부 항공기부품기술연구소) ;
  • 권진회 (경상대학교 항공우주공학과 항공기부품기술연구소)
  • Received : 2012.09.10
  • Accepted : 2012.10.30
  • Published : 2012.12.31

Abstract

With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, composite joint have become a very important research area because they are often the weakest sites in composite structures. In this paper, the failure strengths of the bolted joint and pin joint which have variable hole clearance were evaluated and compared. From the tests, the first failure loads of the bolted joint and pin joint with $880{\mu}m$ hole clearance have decreased by 24.2 % and 51.3 % compared to those of joints with $0{\mu}m$ hole clearance, respectively. Also, the failure index of the joints were calculated by the finite element method and compared with experimental results.

복합재료가 기계부품 및 항공기 구조물에 폭 넓게 적용됨에 따라, 복합재료 구조물에서 가장 취약한 복합재료 체결부의 설계는 매우 중요한 연구 분야로 대두되고 있다. 본 논문에서는 다양한 원공공차를 가지는 복합재료 볼트 조인트와 핀 조인트의 강도를 상호 비교하였다. 실험결과로부터 조인트의 원공공차가 $880{\mu}m$일 때 원공공차가 $0{\mu}m$ 보다 첫 번째 파손하중의 볼트 조인트는 24.2 %, 핀 조인트는 51.3 %의 강도저하가 발생되었다. 또한, 이에 대한 유한 요소 해석을 수행하여 파손지수를 계산하고 실험값과 상호 비교하였다.

Keywords

References

  1. Hart-Smith, L.J., Mechanically Fastened Joints For Advanced Composites Phenomenological Considerations and Simple Analysis, Fibrous Composite in Structural Design, Plenuum Press, 1980, pp. 543-574.
  2. Lee, D.G., Choi, J.H., Jung, M.G., Jun, S.S., Jang, S.H., and Oh, J.H., Composite Materials, Hongrung Publishing Company, Seoul, 2007, pp. 209-221.
  3. Chamis, C.C., "Simplified Procedure for Designing Composite Bolted Joints," Journal of Reinforced Plastics & Composites, Vol. 9, No. 6, 1990, pp. 614-626. https://doi.org/10.1177/073168449000900607
  4. Reinhart, J.J. (Eds), ASTM International, composite, Vol. 1, 1987, pp. 497-495.
  5. Whitney, J.M., and Nuismer, R.J., "Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations," Journal of Composite Materials, Vol. 8, No. 3, 1974, pp. 253-265. https://doi.org/10.1177/002199837400800303
  6. Whitney, J.M., and Nuismer, R.J., "Uniaxial Failure of Composite Laminated Containing Stress Concentrations," Fracture Mechanics of Composites, ASTM STP 593, 1975, pp. 117-142.
  7. Hollman, K., "Failure Analysis of Bolted Composite Joints Exhibiting In-Plane Failure Modes," Journal of Composite Materials, Vol. 30, No. 3, 1996, pp. 358-383. https://doi.org/10.1177/002199839603000304
  8. Chang, F.K., and Scott, R.A., "Strength of Mechanically Fastened Composite Joints," Journal of Composite Materials, Vol. 16, No. 6, 1982, pp. 470-494. https://doi.org/10.1177/002199838201600603
  9. Choi, J.H., Chun, Y.J., and Kweon, J.H., "A Study on the Strength of Mechanically fastened composite joint," Journal of The Korean Society for Composite Materials, Vol. 15, No. 4, 2002, pp. 9-16.
  10. ASTM D5961 M-10, Standard Test method for bearing response of poly matrix composite laminates, Annual book of ASTM Standard, 2009.

Cited by

  1. A study on the strength improvement of the multi-bolted joint vol.108, 2014, https://doi.org/10.1016/j.compstruct.2013.09.047
  2. 점진적 파손해석을 이용한 탄소섬유강화 복합재료 볼트 조인트의 파손거동 예측 vol.34, pp.2, 2021, https://doi.org/10.7234/composres.2021.34.2.101