DOI QR코드

DOI QR Code

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Oyster Farms in Goseong Bay, Korea

고성만 굴 양식장 표층퇴적물의 지화학적특성과 중금속 오염에 관한 연구

  • Kang, Ju-Hyun (Department of Marine biology and Aquaculture & Institute of Marine Industrial Science, Gyeongsang National University) ;
  • Lee, Sang-Jun (Department of Marine biology and Aquaculture & Institute of Marine Industrial Science, Gyeongsang National University) ;
  • Jeong, Woo-Geon (Department of Marine biology and Aquaculture & Institute of Marine Industrial Science, Gyeongsang National University) ;
  • Cho, Sang-Man (Department of Aquaculture and Aquatic Science, Kunsan National University)
  • 강주현 (경상대학교 해양과학대학 해양생명과학과, 해양산업연구소) ;
  • 이상준 (경상대학교 해양과학대학 해양생명과학과, 해양산업연구소) ;
  • 정우건 (경상대학교 해양과학대학 해양생명과학과, 해양산업연구소) ;
  • 조상만 (군산대학교 해양과학대학 해양생명과학과)
  • Received : 2012.09.09
  • Accepted : 2012.09.19
  • Published : 2012.09.30

Abstract

Goseong bay, located in southeast sea of Korea with an area of 2,100 ha, is a semi-enclosed bay well-known for oyster farming cultured in an extended range of 148 ha. The objective of this study is to provide the fundamental data in order to manage the effective sea area. A total 26 of surface sediment were collected from Goseong bay to evaluate their sedimentary environment and heavy metals. The loss on Ignition (LOI), C/N ratio, acid volatile sulfide (AVS) and heavy metals were analyzed. loss on ignition (LOI) of surface sediment range from 1.00% to 3.03% (average 2.00%). The carbonate content ranges from 0.52% to 4.29% (average 2.37%). C/N ratio of organic matter showed that most part of organic matter comes from neighboring continent. Acid volatile sulfide (AVS) value of surface sediment from 0.02 mg/g to 1.43 mg/g (average 0.24 mg/g). A ten element of surface sediments (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn) were calculated by enrichment factor (Ef) and the results show that some areas are highly polluted with respect Cu and Hg. The correlation matrix displays the existence of remarkable levels of correlation with both positive and negative values among different variable pairs. LOI and AVS showed both positive values. LOI and AVS values falls under 2% and 1%. Therefore, Goseong bay showed good in quality of sediment.

고성만의 표층퇴적물에 대한 지화학적 특성과 중금속 오염을 평가하기 위하여 26개 조사정점에 대한 퇴적학적, 지화학적 분석을 하였다. 표층퇴적물의 입도분포는 니질퇴적물로 90% 이상이 세립질 (silt) 로 나타났다. 사질퇴적물은 병산천, 월평천 그리고 대독천 영향을 받는 곳에서 국부적으로 분포하고 있었다. 표층퇴적물의 유기물 함량은 고성만 입구에서 1.6%로 낮게 나타났고, 고성읍에 영향을 받는 만의 북쪽에서는 2.8%로 높게 나타났다. C/N비에 근거한다면 현장에서 형성된 유기물과 인근 주변 대륙에서 유입된 유기물이 혼재된 것으로 나타나고 있다. 탄산염 함량은 0.52%에서 최대 4.29%로 나타났다. 상대적으로 굴 양식장이 위치한 조사정점들에서 탄산염 함량이 높았다. 이는 퇴적물 중에 혼재된 패각편의 영향이 큰 것으로 생각된다. 황화수소 함량은 일본수산자원보호협회에서 제시한 기준값의 이하로 고성만의 건강상태가 양호한 것으로 생각된다. 중금속 오염의 여부를 판단하기 위하여 부화지수 및 농집지수는 조사정점 15에서 Cu농도가 다른 조사정점들에 비해 아주 높게 나타났다. 이는 구리 폐광산 영향인 것으로 생각된다. Hg의 경우 고성만 북쪽에서 다소 높게 나타났다. 이는 농약, 화학비료 및 고성읍에 의한 영향인 것으로 생각된다. 중금속 원소들의 주성분 분석결과 요인 부하량은 2개의 그룹으로 나누어졌다. 요인 1그룹 (Al, As, Cd, Cr, Ni, Pb, V)은 육지에 의한 오염이 아닌 암석의 물리적, 화화적 풍화에 의한 것으로 생각된다. 요인 2그룹 (Cu, Zn, Hg) 은 육지에 의한 오염인 것으로 생각된다. 특히 Cu의 경우 병산천에 위치한 폐광산의 영향 및 화학비료에 영향을 받은 것으로 생각되며, Hg는 화학비료 및 농약에 의한 것으로 생각된다. 고성만의 표층퇴적물 내에 함유된 금속원소들의 분포 경향성을 살펴보기 위하여 상관관계를 분석해 본 결과 유기물 함량을 나타내는 감열감량과 황화수소 함량이 상관관계가 있는 것으로 나타났다. 또한 황화수소 함량이 1%미만으로 낮고, 유기물 함량은 2%미만으로 낮게 나타나 고성만의 표층퇴적물 저서환경이 건강하다고 생각된다. 보존성 원소인 Al과 As, Cd, Cr, Ni, Pb, V과 강한 상관관계를 나타내었다.

Keywords

References

  1. 경상남도. 1997. 경상남도 특별관리어장 정화사업 기본조사 및 실시설계 용역 최종보고서 (고성만) : 23.
  2. 해양수산부. 2005. 수산물생산해역 안전평가 연구보고서 : 3.
  3. 해양수산부. 2007. 해양환경공정법 : 154-164.
  4. Cho, C.H., Yang, H.S., Park, K.Y. and Youm, M.K. (1982) Study on Bottom Mud of Shellfish Farms in Jinhae Bay. Korean Journal of Fisheries and Aquatic Sciences, 15(1): 35-41.
  5. Cho, Y.G., Lee, C.B. and Choi, M.S. (1994) Characteristics of Heavy Metal Distribution in Surface Sediments from the south Sea of Korea. The Journal of the Korean Society of Oceanography, 29(4): 338-356.
  6. Cho, Y.G., Lee, C.B. and Koh, C.H. (2000) Heavy Metals in Surface Sediments from Kwangyang Bay, South Coast of Korea . The Journal of the Korean Society of Oceanography, 5(2): 131-140.
  7. Cho, H.S., Chang, S.W., Kim, Y.O. and Seo, J.H. (2001) Seasonal Fluctuations of Seawater Quality and Sediment Environment of Jinju Bay. Journal of Korean Society for Marine Environmental Engineering, 11: 185-190.
  8. CALVERT S. E. and PEDERSEN T. F. (1993). Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113(1): 67 - 88. https://doi.org/10.1016/0025-3227(93)90150-T
  9. EPA, (1999). Integrated Risk Information System (IRIS). National Center for Environmental Assessment.
  10. Forstner, U. (1981). Metal concentrations in river, lake and ocean water. In: Metal pollution (Forstner, U. and Wittmann, G. T. W.) : 71-109.
  11. Forstner, U. and Wittman, G. T. W.(1983). Metal Pollution in the Aquatic Environment. Springer Verlag press : 486.
  12. Hwang, D.W., Jin, H.G., Kim, S.S., Kim, J.D., Park, J.S. and Kim, S.G. (2006) Distribution of Organic Matters and Metallic Elements in the surface Sediments of Masan Harbor, Korea. Korean Journal of Fisheries and Aquatic Sciences, 39(2): 106-117. https://doi.org/10.5657/kfas.2006.39.2.106
  13. Hyun, S.M., Lee, T.H., Choi, J.S., Choi, D.L. and Woo, H.J. (2003) Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Gwangyang and Yeosu Bay, south coast of Korea. Journal of the Korean Society of Oceanography, 8(4): 380-391.
  14. Jeon, S.K., Cho, Y.G. (2002) Some heavy metal concentration of surface sediments from the southwestern coast of Korea. Journal of the Korean Environmental Scince Society, 11(12): 1299-1305.
  15. Kim, K.Y. (2002) A study on physico-chemical environmental characteristics and the behavior of materials in sediment in Kamak Bay. Ph. D. Thesis. Yeungnam University, Gyeongsan.
  16. Kim, K.T., Kim, E.S., Cho, S.R., Park, J.K., Kim, J.K., and Lee, J.M. (2008) Distribution of TOC and metals in the surface sediments of the Lake Shihwa. Journal of the Korean Society of Marine Environment & Safety, 5:159-164
  17. Korea Ocean Research & Development Institute (2006) Environmental risk assessment of the special manegement areas in the South Sea of Korea.
  18. Muller, P. J.(1977). C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta press, 41(6): 765-776. https://doi.org/10.1016/0016-7037(77)90047-3
  19. Muller, G.(1979). Schwernetalle in den Sedimenten des Rheins-Verderyngen Seit. Umxchau press, 79: 778-783.
  20. Martin, J.M. and Meybeck, M.(1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry press, 7: 173-206. https://doi.org/10.1016/0304-4203(79)90039-2
  21. Morford, J. L., Russell, A. D. and Emerson, S. (2001). Trace Metal Evidence for Changes in Redox Conditions Across Transitions From Terrigenous Clay to Diatomaceous Sediment, Saanich Inlet, B.C. Marine Geology, 174(1): 341-354. https://doi.org/10.1016/S0025-3227(00)00159-6
  22. Morillo, J. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. In Pollution and Environmen tal Issues(Usero, J. and Gracia, I.). Chemosphere press, 55: 431-442. https://doi.org/10.1016/j.chemosphere.2003.10.047
  23. Noh, I.H. (2002) The Distribution of organic matter and its origin in sediment in Gamak Bay, Southern Korea. MS Thesis. Yosu National University, Yosu.
  24. Romankevich, E. A.(1984). Geochemistry of Organic Matter in the Ocean. Springer Verlag press: 334.
  25. Ricken, W.(1993). Sedimentation as a Three-Component System, Organic carbon, Carbonate Noncarbonate. Springer Verlag press: 211.
  26. Rubio, B., Nombela, M. A. and Vilas, F. (2000) Geochemistry of major and tracer elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40: 968-980. https://doi.org/10.1016/S0025-326X(00)00039-4
  27. Szefer, P. and Kaliszan, R. (1993) Distribution of elements in sediment cores of the Southern Baltic from the point of view of principal component analysis. Studia 1 Materialy Oceanogeczne NR., 64(1): 95-102.
  28. Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C. and Esteves da Silva, J. C. G. (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environmental Pollution, 105: 311-323. https://doi.org/10.1016/S0269-7491(99)00048-2
  29. Shin, P. K. S. and Lam, W. K. C. (2001) Development of a marine sediment pollution index. Environmental Pollution, 113: 281-291. https://doi.org/10.1016/S0269-7491(00)00192-5
  30. Vogt, N. B. (1990) Multivariate ecotoxicological mapping of the relationships between sediment chemical composition and fauna diversity. Science of The Total Environment, 90: 149-161. https://doi.org/10.1016/0048-9697(90)90191-V
  31. Youm, M.G., Kwon, Y.T and Jung, T.S. (2004) Statistical Characteristics of Grain Size Distribution in Sediments of Masan Bay. Institute for Environmental Research of Kyungnam University, 27: 93-103.
  32. Yoon, Y.H., Park, J.M. (1992) On the organic pollution of the inner part of Kwangyang Bay in lower temperature seasons. Bulletin of The Marine Sciences Institute Yosu National Fisheries University, 1: 55-67
  33. Yoon, Y.H. (2000) A Study on the Distributional Characteristic of Organic Matters on the Surface Sediments and Its Origin in Keogeum-sudo, Southern Part of Korean Peninsula. Journal of the Korean Environmental Scince Society, 9(2): 137-144.
  34. Yokoyama, H. (1995) Macrobenthic assemblages in Omura Bay-1 : Community parameters versus bottom environmental factors, Bulletin of National Research Institute of Aquaculture, 24: 43-53.

Cited by

  1. The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean vol.29, pp.1, 2013, https://doi.org/10.9710/kjm.2013.29.1.51
  2. The Environmental Characteristics and Factors on the Cultured manila clam (Ruditapes philippinarum) at Hwangdo and Jeongsanpo of Taean in the West coast of Korea vol.30, pp.2, 2014, https://doi.org/10.9710/kjm.2014.30.2.117
  3. Physiochemical Characteristics and Heavy Metal in the Surface Sediments of Marine Shellfish Farming Waters in Anjung Bay, Korea vol.30, pp.4, 2014, https://doi.org/10.9710/kjm.2014.30.4.421
  4. Heavy Metal Contents and Food Safety Assessment of Processed Seaweeds and Cultured Lavers vol.19, pp.3, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.3.203
  5. 인천 H항 표층 퇴적물의 오염도 평가 vol.20, pp.5, 2014, https://doi.org/10.7837/kosomes.2014.20.5.504
  6. 남해 연안 피조개 (Scapharca broughtonii) 양식장의 환경특성 vol.32, pp.3, 2012, https://doi.org/10.9710/kjm.2016.32.3.149