DOI QR코드

DOI QR Code

An Experimental Study on the Structural Behavior of Steel Grid Shear Wall subjected to Axial Force and Cyclic Lateral Load

축력과 반복수평력을 받는 격자강판 내진보강벽의 구조거동에 관한 실험적 연구

  • 박정우 (유니슨이테크(주) 기술연구소) ;
  • 심기철 (유니슨이테크(주) 기술연구소) ;
  • 박진영 (유니슨이테크(주) 기술연구소) ;
  • 이영학 (경희대학교 건축공학과) ;
  • 김희철 (경희대학교 건축공학과)
  • Received : 2012.11.09
  • Accepted : 2012.11.23
  • Published : 2012.12.31

Abstract

The recently constructed buildings are ensuring seismic safety with enhanced design criteria. But, the buildings unapplied enhanced design criteria are very weak. In this study, steel grid shear wall is proposed as a solution of seismic retrofit to ensure safety of the existing buildings for the earthquake. And the structural performance experiments were carried out under axial force and cyclic lateral loads. The two specimens were made of a reference RC frame and steel grid shear wall in-filled RC frame. The test setup configured with two dynamic actuators, for the axial force with a 500kN capacity actuator and for the cyclic lateral load applied with the 2,000kN actuator. Compared with control specimen, the strength, stiffness, ductility, energy dissipation capacity of the seismic retrofit structures is evaluated.

근래에 지어진 건축물의 경우 지진에 대한 안전성을 확보하고 있지만 1983년 개정이전의 건축물은 내진설계가 미반영 되어 있어 지진에 대해 매우 취약하다. 본 연구에서는 내진성능이 부족한 기존 건축물의 지진 발생 시의 안전성 확보를 위한 내진보강 방안으로 격자강판 내진보강벽을 제안한다. 축력과 반복수평력을 받는 성능실험을 수행하였으며, 실험체는 벤치마크 용도로 순수 철근콘크리트 프레임(BM-RC)과 프레임 내부에 격자강판 내진보강벽(SW-RC)을 설치한 2개의 실험체를 제작하여 실험을 수행하였고, 축력과 횡하중 가력을 위하여 500kN용량의 엑츄에이터 2대와 2,000kN용량의 엑츄에이터 1대를 사용하였다. 실험결과를 통해 벤치마크 실험체와 비교하여 강도, 강성, 연성 및 에너지소산능력을 평가하였다.

Keywords

References

  1. American Institute of Steel Construction (2005) Steel Construction Manual, I and II, 13th ed., AISC.
  2. ATC-24 (1992) Guidelines for cyclic seismic testing of components of steel structures, Applied Technology Council, California.
  3. Back, S.Y., Kwon, Y.B., Bae, D.B., Choi, K.G. (2008) Steel Design, 4th ed., CIR.
  4. Berman, J. W., Bruneau, M. (2003) Plastic Analysis and Design of Steel Plate Shear Walls, Journal of Structural Engineering, ASCE, 129(11), 2003, pp.1448-1456. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1448)
  5. Berman, J. W., Bruneau, M. (2005) Experimental investigation of light-gauge steel plate shear walls, J. Struct. Eng., 1312, pp.259-267.
  6. Dumonteil, P. (1992) Simple equations for effective length factors, Eng. J., AISC, 29(3), Third Quarter, pp.111-115.
  7. Kim, J.W., Lee, M.H., Oh, S.H., Yoon, M.H., Moon, T.S. (2001) Behavior of Steel Plate Shear Wall due to Width-Thickness ratios and Reinforced Ribs, Journal of the Architectural, 21(1), pp.55-58.
  8. Lee, M.H., Oh, S.H., Yoon, M.H. (2009) Hysteretic Model for Load-Deformation of Unstiffness Steel Plate Shear Panels under Cyclic Loading, Journal of the Architectural, 25(3), pp.11-18.
  9. Lee, Y.G., Lee, M.H., Oh, S.H., Yoon, M.H., Moon, T.S. (2001) Behavior of Shear Yielding Steel Plate Seismic Wall by F.E.M Analysis, Journal of the Architectural, 21(1), pp.199-202.
  10. Park, S.E., Park, M.H., Kwon, M.H., Chang, C.H. (2001) Discrete Optimum Design of Steel Framed Structures Subjected to Deformed of Panel Zone, Journal of the Computational Structural Engineering, 15(2), pp.315-327
  11. Sabelli, R., Bruneau, M. (2007) Steel plate shear walls(AISC design guide), American Institute of Steel Construction, Inc., Chicago, Ill.
  12. Seigui, W.T. (2007) Steel Design, 4th International Student ed., Thomson Learning.
  13. Vian, D., Bruneau, M., Purba, R. (2009) Special Perforated Steel Plate Shear Walls with Reduced Beam Section Anchor Beams. II: Analysis and Design Recommendations, Journal of Structural Engineering, ASCE, 135(Issue 3), pp.221-228. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(221)
  14. Wi, J.E., Lee, M.H., Oh, S.H., Huh, C., Oh, Y.S., Yoon, M.H., Moon, T.S. (2000) Behavior of Shear Yielding Steel Plate Seismic Wall, Journal of the Architectural, 20(2), pp.377-380.