DOI QR코드

DOI QR Code

Level Set Based Topological Shape Optimization of Hyper-elastic Nonlinear Structures using Topological Derivatives

위상 민감도를 이용한 초탄성 비선형 구조의 레벨셋 기반 위상 및 형상 최적설계

  • Kim, Min-Geun (WTG development team1, Samsung Heavy Industries) ;
  • Ha, Seung-Hyun (Department of Civil Engineering, Jones Hopkins University) ;
  • Cho, Seonho (Department of Naval Architecture and Ocean Engineering)
  • 김민근 (삼성중공업 풍력발전사업부) ;
  • 하승현 (존스홉킨스대학교 토목공학과) ;
  • 조선호 (서울대학교 조선해양공학과)
  • Received : 2012.11.19
  • Accepted : 2012.12.01
  • Published : 2012.12.31

Abstract

A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.

초탄성을 고려한 비선형 구조의 레벨셋 기반 위상 및 형상 최적설계 방법을 개발하였다. 전체 영역에서 재료의 극단적인 불균형 분포로 기인하는 부정확한 접강성행렬(tangent stiffness matrix)로 인해, 비선형 문제의 위상 최적설계는 심각한 수렴성의 어려움을 겪는다. 이를 해결하기 위해, 임의의 형상을 표현할 수 있는 레벨셋 방법의 장점을 이용하여 정확한 접강성 행렬을 구하기 위해 명시적인 경계(explicit boundary)를 이용하였다. 레벨셋 함수로 표현되는 임의의 영역을 암시적 고정 격자(implicit fixed grid)를 이용하여 계산하는 것 대신에 명시적으로 그 영역을 이산화하기 위해 딜라우네이 삼각화 기법(Delaunay triangulation scheme)을 이용하였다. 레벨셋 방정식을 풀기 위해 최적화 조건으로부터 라그란지안(Lagrangian; 목적함수)가 감소하는 방향이 되도록 속도장을 결정하였다. 실제 영역 바깥쪽 속도장은 Adalsteinsson와 Sethian(1999)가 제안한 속도확장 기법을 이용하여 구하였다. 레벨셋 기반의 최적화 기법에 위상 민감도를 이용하여, 최적화 과정에서 원하는 시기와 위치에 위상 변화가 가능하도록 하였다.

Keywords

References

  1. Adalsteinsson, D., Sethian, J.A. (1999) The Fast Construction of Extension Velocities in Level Set Methods, Journal of Computational Physics, 148, pp.2-22. https://doi.org/10.1006/jcph.1998.6090
  2. Allaire, G., Jouve, F., Toader, A.M. (2004) Structural Optimization using Sensitivity Analysis and a Level-Set Method, Journal of Computational Physics, 194, pp.363-393. https://doi.org/10.1016/j.jcp.2003.09.032
  3. Bendsoe, M.P., Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design using a Homogenization Method, Computer Methods in Applied Mechanics and Engineering, 71, pp. 197-224. Bendso̸e https://doi.org/10.1016/0045-7825(88)90086-2
  4. Bendsoe, M.P., Sigmund, O. (2003) Topology Optimization: Theory, Methods and Applications, Springer-Verlag, Berlin, pp.370.
  5. Buhl, T., Petersen, C.B.W., Sigmund, O. (2000) Stiffness Design of Geometrically Nonlinear Structures using Topology Optimization, Structural Multidisciplinary Optimization, 19, pp.93-104. https://doi.org/10.1007/s001580050089
  6. Cho, S., Jung, H. (2003) Design Sensitivity Analysis and Topology Optimization of Displacement-Loaded Nonlinear Structures, Computer Methods in Applied Mechanics and Engineering, 192, pp.2539-2553. https://doi.org/10.1016/S0045-7825(03)00274-3
  7. Ha, S.H, Cho, S. (2009) Level Set Based Topological Shape Optimization of Geometrically Nonlinear Structures using Unstructured Mesh, Computers & Structures, 86, pp.1447-1455.
  8. Kim, M.G., Ha, S.H, Cho, S. (2009) Level Set-Based Topological Shape Optimization of Nonlinear Heat Conduction Problems using Topological Derivatives, Mechanics Based Design of Structures and Machines, 37, pp.550-582. https://doi.org/10.1080/15397730903272848
  9. Kwak, J., Cho, S. (2005) Topological Shape Optimization of Geometrically Nonlinear Structures using Level Set Method, Computers & Structures, 83, pp.2257-2268. https://doi.org/10.1016/j.compstruc.2005.03.016
  10. Mooney, M. (1940) A Theory of Large Elastic Deformation, Journal of Applied Physics, 11 pp.582-592. https://doi.org/10.1063/1.1712836
  11. Novotny, A.A., Feijoo, R.A., Taroco, E., Padra, C. (2000) Topological Sensitivity Analysis, Computational Methods in Applied Mechanics and Engineering, 188 pp.713-726. https://doi.org/10.1016/S0045-7825(99)00357-6
  12. Osher, S., Sethian, J.A. (1988) Front Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational Physics, 79, pp.12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  13. Persson, P., Strang, G. (2004) A Simple Mesh Henerator in Matlab, SIAM Review, 46(2), pp.329-345. https://doi.org/10.1137/S0036144503429121
  14. Sokolowski, J., Zochowski, A. (1999) A. On Topological Derivative in Shape Optimization, SIAM Journal of Control and Optimization, 37, 1251-1272. https://doi.org/10.1137/S0363012997323230
  15. Wang, M.Y., Wang, X., Guo, D. (2003) A Level Set Method for Structural Topology Optimization, Computational Methods in Applied Mechanics and Engineering, 192, pp.227-24. https://doi.org/10.1016/S0045-7825(02)00559-5

Cited by

  1. Level Set Based Shape Optimization of Linear Structures using Topological Derivatives vol.27, pp.1, 2014, https://doi.org/10.7734/COSEIK.2014.27.1.9
  2. Design Sensitivity Analysis of Coupled MD-Continuum Systems Using Bridging Scale Approach vol.27, pp.3, 2014, https://doi.org/10.7734/COSEIK.2014.27.3.137