DOI QR코드

DOI QR Code

Human Papillomavirus Type 16/18 Oncoproteins: Potential Therapeutic Targets in Non-smoking Associated Lung Cancer

  • Zhang, Er-Ying (Institute of Biochemistry and Molecular Biology, Guangdong Medical College) ;
  • Tang, Xu-Dong (Institute of Biochemistry and Molecular Biology, Guangdong Medical College)
  • Published : 2012.11.30

Abstract

High-risk human papillomavirus (HPV) especially HPV-16 and HPV-18 types are speculated to be important risk factors in non-smoking associated lung cancer in Asia. Increasing evidence has demonstrated that HPV oncoproteins may contribute to lung tumorigenesis and cell transformation. Importantly, HPV 16/18 E6 and E7 oncoproteins can mediate expression of multiple target genes and proteins, such as p53/pRb, VEGF, HIF-$1{\alpha}$, cIAP-2, and hTERT, and contribute to cell proliferation, angiogenesis and cell immortalization through different signaling pathways in lung cancer. This article provides an overview of experiment data on HPV-associated lung cancer, describes the main targets on which HPV E6/E7 oncoproteins act, and further discusses the potential signaling pathways in which HPV E6/E7 oncoproteins are involved. In addition, we also raise questions regarding existing problems with the study of HPV-associated lung cancer.

Keywords

References

  1. An WG., Kanekal M, Simon MC, et al (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature, 392, 405-8. https://doi.org/10.1038/32925
  2. Baglole CJ, Maggirwar SB, Gasiewicz TA, et al (2008). The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-kappaB family member RelB. J Biol Chem, 283, 28944-57. https://doi.org/10.1074/jbc.M800685200
  3. Bishop JA, Ogawa T, Chang X, et al (2012). HPV analysis in distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma. Am J Surg Pathol, 36, 142-8. https://doi.org/10.1097/PAS.0b013e3182395c7b
  4. Braspenning J, Marchini A, Albarani V, et al (1998). The CXXC Zn binding motifs of the human papillomavirus type 16 E7 oncoprotein are not required for its in vitro transforming activity in rodent cells. Oncogene, 16, 1085-9. https://doi.org/10.1038/sj.onc.1201617
  5. Budde A, Schneiderhan-Marra N, Petersen G, et al (2005). Retinoblastoma susceptibility gene product pRB activates hypoxia-inducible factor-1 (HIF-1). Oncogene, 24, 1802-8. https://doi.org/10.1038/sj.onc.1208369
  6. Buonomo T, Carraresi L, Rossini M, et al (2011). Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins. J Transl Med, 9, 2. https://doi.org/10.1186/1479-5876-9-2
  7. Carraresi L, Martinelli R, Vannoni A, et al (2006). Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice. Cancer Lett, 231, 65-73. https://doi.org/10.1016/j.canlet.2005.01.027
  8. Chang YH, Yu CW, Lai LC, et al (2010). Up-regulation of interleukin-17 expression by human papillomavirus type 16 E6 in nonsmall cell lung cancer. Cancer, 116, 4800-9. https://doi.org/10.1002/cncr.25224
  9. Chen D, Li M, Luo J, et al (2003). Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem, 278, 13595-8. https://doi.org/10.1074/jbc.C200694200
  10. Chen D, Tian T, Wang H, et al (2009). Association of human aryl hydrocarbon receptor gene polymorphisms with risk of lung cancer among cigarette smokers in a Chinese population. Pharmacogenet Genomics, 19, 25-34. https://doi.org/10.1097/FPC.0b013e328316d8d8
  11. Chen PH, Chang H, Chang JT, et al (2012). Aryl hydrocarbon receptor in association with RelA modulates IL-6 expression in non-smoking lung cancer. Oncogene, 31, 2555-65. https://doi.org/10.1038/onc.2011.438
  12. Cheng YW, Chiou HL, Chen JT, et al (2004). Gender difference in human papillomarvirus infection for non-small cell lung cancer in Taiwan. Lung Cancer, 46, 165-70. https://doi.org/10.1016/j.lungcan.2004.03.023
  13. Cheng YW, Chiou HL, Sheu GT, et al (2001). The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Res, 61, 2799-803.
  14. Cheng YW, Lee H, Shiau MY, et al (2008). Human papillomavirus type 16/18 up-regulates the expression of interleukin-6 and antiapoptotic Mcl-1 in non-small cell lung cancer. Clin Cancer Res, 14, 4705-12. https://doi.org/10.1158/1078-0432.CCR-07-4675
  15. Cheng YW, Wu MF, Wang J, et al (2007). Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res, 67, 10686-93. https://doi.org/10.1158/0008-5472.CAN-07-1461
  16. Cheng YW, Wu TC, Chen CY, et al (2008). Human telomerase reverse transcriptase activated by E6 oncoprotein is required for human papillomavirus-16/18-infected lung tumorigenesis. Clin Cancer Res, 14, 7173-9. https://doi.org/10.1158/1078-0432.CCR-08-0850
  17. Chiou HL, Wu MF, Liaw YC, et al (2003). The presence of human papillomavirus type 16/18 DNA in blood circulation may act as a risk marker of lung cancer in Taiwan. Cancer, 97, 1558-63. https://doi.org/10.1002/cncr.11191
  18. Ciotti M, Giuliani L, Ambrogi V, et al (2006). Detection and expression of human papillomavirus oncogenes in non-small cell lung cancer. Oncol Rep, 16, 183-9.
  19. Ciotti M, Marzano V, Giuliani L, et al (2009). Proteomic investigation in A549 lung cell line stably infected by HPV16E6/E7 oncogenes. Respiration, 77, 427-39. https://doi.org/10.1159/000176209
  20. De Silva R, Whitaker NJ, Rogan EM, et al (1994). HPV-16 E6 and E7 genes, like SV40 early region genes, are insufficient for immortalization of human mesothelial and bronchial epithelial cells. Exp Cell Res, 213, 418-27. https://doi.org/10.1006/excr.1994.1218
  21. Dynan WS, Tjian R (1983). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell, 35, 79-87. https://doi.org/10.1016/0092-8674(83)90210-6
  22. Eichten A, Westfall M, Pietenpol JA, et al (2002). Stabilization and functional impairment of the tumor suppressor p53 by the human papillomavirus type 16 E7 oncoprotein. Virology, 295, 74-85. https://doi.org/10.1006/viro.2002.1375
  23. Fei Y, Yang J, Hsieh WC, et al (2006). Different human papillomavirus 16/18 infection in Chinese non-small cell lung cancer patients living in Wuhan, China. Jpn J Clin Oncol, 36, 274-9. https://doi.org/10.1093/jjco/hyl017
  24. Gomez-Manzano C, Fueyo J, Jiang H, et al (2003). Mechanisms underlying PTEN regulation of vascular endothelial growth factor and angiogenesis. Ann Neurol, 53, 109-17. https://doi.org/10.1002/ana.10396
  25. Gonzalez SL, Stremlau M, He X, et al (2001). Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol, 75, 7583-91. https://doi.org/10.1128/JVI.75.16.7583-7591.2001
  26. Goto A, Li CP, Ota S, et al (2011). Human papillomavirus infection in lung and esophageal cancers: analysis of 485 Asian cases. J Med Virol, 83, 1383-90. https://doi.org/10.1002/jmv.22150
  27. Guo F, Fan Y, Qiao Y, et al (2012). [Study advance of relationship between HPV and lung cancer]. Zhongguo Fei Ai Za Zhi, 15, 191-4.
  28. Helt AM, Funk JO, Galloway DA (2002). Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J Virol, 76, 10559-68. https://doi.org/10.1128/JVI.76.20.10559-10568.2002
  29. Hoenil Jo, K JW (2005). Implications of HPV infection in uterine cervical cancer. Cancer Therapy Vol, 3, 419-34.
  30. Ikezoe T, Chen SS, Tong XJ, et al (2003). Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol, 23, 1187-93.
  31. Iwakawa R, Kohno T, Enari M, et al (2010). Prevalence of human papillomavirus 16/18/33 infection and p53 mutation in lung adenocarcinoma. Cancer Sci, 101, 1891-16. https://doi.org/10.1111/j.1349-7006.2010.01622.x
  32. Jones DL, Thompson DA, Suh-Burgmann E, et al (1999). Expression of the HPV E7 oncoprotein mimics but does not evoke a p53-dependent cellular DNA damage response pathway. Virology, 258, 406-14. https://doi.org/10.1006/viro.1999.9733
  33. Jones EE, Wells SI (2006). Cervical cancer and human papillomaviruses: inactivation of retinoblastoma and other tumor suppressor pathways. Curr Mol Med, 6, 795-808.
  34. Kalmes M, Hennen J, Clemens J, et al (2011). Impact of aryl hydrocarbon receptor (AhR) knockdown on cell cycle progression in human HaCaT keratinocytes. Biol Chem, 392, 643-51.
  35. Kato T, Koriyama C, Khan N, et al (2012). EGFR mutations and human papillomavirus in lung cancer. Lung Cancer, 78, 114-7
  36. Kim JH, Kim H, Lee KY, et al (2007). Aryl hydrocarbon receptor gene polymorphisms affect lung cancer risk. Lung Cancer, 56, 9-15. https://doi.org/10.1016/j.lungcan.2006.11.010
  37. KinjomT, Kamiyama K, Chinen K, et al (2003). Squamous metaplasia induced by transfection of human papillomavirus DNA into cultured adenocarcinoma cells. Mol Pathol, 56, 97-108. https://doi.org/10.1136/mp.56.2.97
  38. Koshiol J, Rotunno M, Gillison ML, et al (2011). Assessment of human papillomavirus in lung tumor tissue. J Natl Cancer Inst, 103, 501-7. https://doi.org/10.1093/jnci/djr003
  39. Kyo S, Takakura M, Fujiwara T, et al (2008). Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci, 99, 1528-38. https://doi.org/10.1111/j.1349-7006.2008.00878.x
  40. Li G, He L, Zhang E, et al (2011). Overexpression of human papillomavirus (HPV) type 16 oncoproteins promotes angiogenesis via enhancing HIF-1alpha and VEGF expression in non-small cell lung cancer cells. Cancer Lett, 311, 160-70. https://doi.org/10.1016/j.canlet.2011.07.012
  41. Lin P, Chang H, Ho WL, et al (2003). Association of aryl hydrocarbon receptor and cytochrome P4501B1 expressions in human non-small cell lung cancers. Lung Cancer, 42, 255-61. https://doi.org/10.1016/S0169-5002(03)00359-3
  42. Lin P, Chang H, Tsai WT, et al (2003). Overexpression of aryl hydrocarbon receptor in human lung carcinomas. Toxicol Pathol, 31, 22-30. https://doi.org/10.1080/01926230309746
  43. Liu X, Clements A, Zhao K, et al (2006). Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem, 281, 578-86. https://doi.org/10.1074/jbc.M508455200
  44. Liu X, Disbrow GL, Yuan H, et al (2007). Myc and human papillomavirus type 16 E7 genes cooperate to immortalize human keratinocytes. J Virol, 81, 12689-95. https://doi.org/10.1128/JVI.00669-07
  45. McMurray HR, McCance DJ (2003). Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol, 77, 9852-61. https://doi.org/10.1128/JVI.77.18.9852-9861.2003
  46. Munoz JP, Gonzalez C, Parra B, et al (2012). Functional interaction between human papillomavirus type 16 E6 and E7 oncoproteins and cigarette smoke components in lung epithelial cells. PLoS One, 7, e38178. https://doi.org/10.1371/journal.pone.0038178
  47. Numasaki M, Fukushi J, Ono M, et al (2003). Interleukin-17 promotes angiogenesis and tumor growth. Blood, 101, 2620-7. https://doi.org/10.1182/blood-2002-05-1461
  48. Numasaki M, Watanabe M, Suzuki T, et al (2005). IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol, 175, 6177-89. https://doi.org/10.4049/jimmunol.175.9.6177
  49. Nunobiki O, Ueda M, Toji E, et al (2011). Genetic Polymorphism of Cancer Susceptibility Genes and HPV Infection in Cervical Carcinogenesis. Patholog Res Int, 2011, 364069.
  50. Ohtsuka K, Ohnishi H, Furuyashiki G, et al (2006). Clinicopathological and biological significance of tyrosine kinase domain gene mutations and overexpression of epidermal growth factor receptor for lung adenocarcinoma. J Thorac Oncol, 1, 787-95. https://doi.org/10.1097/01243894-200610000-00006
  51. Park JS, Kim EJ, Lee JY, et al (2001). Functional inactivation of p73, a homolog of p53 tumor suppressor protein, by human papillomavirus E6 proteins. Int J Cancer, 91, 822-7. https://doi.org/10.1002/1097-0215(200002)9999:9999<::AID-IJC1130>3.0.CO;2-0
  52. Park MS, Chang YS, Shin JH, et al (2007). The prevalence of human papillomavirus infection in Korean non-small cell lung cancer patients. Yonsei Med J, 48, 69-77. https://doi.org/10.3349/ymj.2007.48.1.69
  53. Phelps WC, Yee CL, Munger K, et al (1988). The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell, 53, 539-47. https://doi.org/10.1016/0092-8674(88)90570-3
  54. Podechard N, Lecureur V, Le Ferrec E, et al (2008). Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicol Lett, 177, 130-7. https://doi.org/10.1016/j.toxlet.2008.01.006
  55. Puga A, Xia Y, Elferink C (2002). Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact, 141, 117-30. https://doi.org/10.1016/S0009-2797(02)00069-8
  56. Razani B, Altschuler Y, Zhu L, et al (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry, 39, 13916-24. https://doi.org/10.1021/bi001489b
  57. Saini N, Srinivasan R, Chawla Y, et al (2009). Telomerase activity, telomere length and human telomerase reverse transcriptase expression in hepatocellular carcinoma is independent of hepatitis virus status. Liver Int, 29, 1162-70. https://doi.org/10.1111/j.1478-3231.2009.02082.x
  58. Sanchez-Puig N, Veprintsev DB, Fersht AR (2005). Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell, 17, 11-21. https://doi.org/10.1016/j.molcel.2004.11.019
  59. Sen S, Reddy VG, Guleria R, et al (2002). Telomerase--a potential molecular marker of lung and cervical cancer. Clin Chem Lab Med, 40, 994-1001.
  60. Shimoda LA, Semenza GL (2011). HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med, 183, 152-6. https://doi.org/10.1164/rccm.201009-1393PP
  61. Srinivasan M, Taioli E, Ragin CC (2009). Human papillomavirus type 16 and 18 in primary lung cancers--a meta-analysis. Carcinogenesis, 30, 1722-28. https://doi.org/10.1093/carcin/bgp177
  62. Syrjanen K (2012). Detection of human papillomavirus in lung cancer: systematic review and meta-analysis. Anticancer Res, 32, 3235-50.
  63. Syrjanen K, Silvoniemi M, Salminen E, et al (2012). Detection of human papillomavirus genotypes in bronchial cancer using sensitive multimetrix assay. Anticancer Res, 32, 625-31.
  64. Thomas M, Glaunsinger B, Pim D, et al (2001). HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene, 20, 5431-39. https://doi.org/10.1038/sj.onc.1204719
  65. Thomas MC, Chiang CM (2005). E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell, 17, 251-64. https://doi.org/10.1016/j.molcel.2004.12.016
  66. Todorovic B, Massimi P, Hung K, et al (2011). Systematic analysis of the amino acid residues of human papillomavirus type 16 E7 conserved region 3 involved in dimerization and transformation. J Virol, 85, 10048-57. https://doi.org/10.1128/JVI.00643-11
  67. Veldman T, Horikawa I, Barrett JC, et al (2001). Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol, 75, 4467-72. https://doi.org/10.1128/JVI.75.9.4467-4472.2001
  68. Walker J, Smiley LC, Ingram D, et al (2011). Expression of human papillomavirus type 16 E7 is sufficient to significantly increase expression of angiogenic factors but is not sufficient to induce endothelial cell migration. Virology, 410, 283-90. https://doi.org/10.1016/j.virol.2010.11.010
  69. Wang H, Qiao YL (2007). [Human papillomavirus types and their related diseases]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 29, 678-84.
  70. Wang J, Cheng YW, Wu DW, et al (2006). Frequent FHIT gene loss of heterozygosity in human papillomavirus-infected nonsmoking female lung cancer in Taiwan. Cancer Lett, 235, 18-25. https://doi.org/10.1016/j.canlet.2005.03.058
  71. Wang Y, Wang A, Jiang R, et al (2008). Human papillomavirus type 16 and 18 infection is associated with lung cancer patients from the central part of China. Oncol Rep, 20, 333-9.
  72. Watabe Y, Nazuka N, Tezuka M, et al (2010). Aryl hydrocarbon receptor functions as a potent coactivator of E2F1-dependent trascription activity. Biol Pharm Bull, 33, 389-97. https://doi.org/10.1248/bpb.33.389
  73. Wu DW, Liu WS, Wang J, et al (2011). Reduced p21(WAF1/CIP1) via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirusassociated lung cancer. Clin Cancer Res, 17, 1895-905. https://doi.org/10.1158/1078-0432.CCR-10-2316
  74. Wu HH, Wu JY, Cheng YW, et al (2010). cIAP2 upregulated by E6 oncoprotein via epidermal growth factor receptor/ phosphatidylinositol 3-kinase/AKT pathway confers resistance to cisplatin in human papillomavirus 16/18-infected lung cancer. Clin Cancer Res, 16, 5200-10. https://doi.org/10.1158/1078-0432.CCR-10-0020
  75. Yuan H, Fu F, Zhuo J, et al (2005). Human papillomavirus type 16 E6 and E7 oncoproteins upregulate c-IAP2 gene expression and confer resistance to apoptosis. Oncogene, 24, 5069-78. https://doi.org/10.1038/sj.onc.1208691
  76. Zhang Y, Dasgupta J, Ma RZ, et al (2007). Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. J Virol, 81, 3618-26. https://doi.org/10.1128/JVI.02044-06
  77. Zimmermann H, Degenkolbe R, Bernard HU, et al (1999). The human papillomavirus type 16 E6 oncoprotein can downregulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol, 73, 6209-19.
  78. zur Hausen H (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer, 2, 342-50. https://doi.org/10.1038/nrc798
  79. zur Hausen H (2009). Papillomaviruses in the causation of human cancers -a brief historical account. Virology, 384, 260-5. https://doi.org/10.1016/j.virol.2008.11.046

Cited by

  1. Human Papillomavirus Genotypes Associated with Mucopurulent Cervicitis and Cervical Cancer in Hangzhou, China vol.14, pp.6, 2013, https://doi.org/10.7314/APJCP.2013.14.6.3603
  2. Reversal of Resistance towards Cisplatin by Curcumin in Cervical Cancer Cells vol.15, pp.3, 2014, https://doi.org/10.7314/APJCP.2014.15.3.1403
  3. Pathways and Delayed Cyclin B1 Nuclear Translocation vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.4101
  4. The Role of Human Papilloma Virus (HPV) Infection in Non-Anogenital Cancer and the Promise of Immunotherapy: A Review vol.33, pp.5, 2014, https://doi.org/10.3109/08830185.2014.911857
  5. Hepatitis C virus core protein induces hypoxia-inducible factor 1α-mediated vascular endothelial growth factor expression in Huh7.5.1 cells vol.9, pp.5, 2014, https://doi.org/10.3892/mmr.2014.2039
  6. Activities of E6 Protein of Human Papillomavirus 16 Asian Variant on miR-21 Up-regulation and Expression of Human Immune Response Genes vol.16, pp.9, 2015, https://doi.org/10.7314/APJCP.2015.16.9.3961
  7. Involvement of TP53 and TP16 expression in human papillomavirus-associated non-small cell lung cancer vol.12, pp.5, 2016, https://doi.org/10.3892/ol.2016.5087