DOI QR코드

DOI QR Code

The Possibility of Silk Protein to the Chondrogenesis

연골 재생에 대한 실크 단백질의 가능성

  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Heui-Sam (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Chon, Jeong-Woo (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 조유영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이광길 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이희삼 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 전정우 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Published : 2012.06.30

Abstract

A number of researcher have studied biomaterials for cartilage regeneration and are now proceeding. Silk protein was attempted for use as biomedical materials by many researchers because it is natural polymer with biocompatibility and excellent mechanical strength. In this study, we want to know a possibility of silk protein on the cartilage regeneration. We isolated chondrocytes from nasal cartilage and confirmed optimal culture condition of the cells. To observe the effects of silk fibroin on chondrogenesis, we added silk fibroin solutions to the culture medium of chondrocyte and detected gene expression levels related chondrogenesis such as col2, col10. The chondrocytes showed optimal growth when they were cultured in DMEM medium supplemented with 10% FBS 100 ${\cdot}{\ddot{I}}$M ascorbic acid. The levels of col2 gene expression were increased in non-autoclaved silk fibroin, but decreased in autoclaved one. Also the gene expression levels of col10 were increased in silk fibroin, particulary at 3D culture. Based on the results of this study, we had seen the possibility of silk fibroin for cartilage regeneration. In future studies, we should know more clearly the relationship between cartilage regeneration and the silk protein.

최근 다양한 생체재료를 이용하여 연골재생과 관련한 많은 연구가 진행되고 있다. 실크단백질은 생체적합성이 뛰어나며, 우수한 기계적 강도를 가지고 있는 천연 고분자 물질로서 최근 생체재료로 사용하기위한 연구가 세계적으로 많이 이루어지고 있다. 본 연구는 실크단백질이 연골재생에 효과가 있는지를 확인하기위하여 수행되었다. 우리는 연골세포를 코뼈로부터 분리하고, 3종류의 배지 (DMEM, DMEM/F12, RPMI)와 서로 다른 농도의 ascorbic acid를 사용하여 최적 배양조건을 확립하였다. 그 결과 우리가 분리한 연골세포는 10% FBS와 $100{\mu}M$ ascorbic acid가 함유된 DMEM배지에서 가장 잘 생장하였다. 연골에 대한 실크의 영향을 관찰하기위해서, 실크 피브로인 용액을 제작하고 이를 멸균한것과 멸균하지 않은 것으로 구분하여 연골세포 배양 시 첨가하여 연골분화에 대한 마커인자인 제2형 콜라겐의 발현량을 측정하였다. 멸균하지 않은 실크 피브로인 첨가시 제2형 콜라겐의 발현량이 2.7배 증가하였으나, 멸균된 실크 피브로인의 첨가는 제2형 콜라겐의 발현량을 오히려 감소시켰다. 또한 실크 피브로인은 제10형 콜라겐의 발현을 증가시키는 것을 확인하였다. 이 효과는 특히 연골세포를 3차원 배양할 때 더 컸다. 본 연구결과를 통하여 우리는 연골을 재생하는데 있어서 실크 단백질을 가능성을 보았으며, 향후 연구에서 연골재생과 실크의 관계를 좀 더 정밀하게 파악하고자 한다.

Keywords

References

  1. Coelho CND, Kosher RA (1991) A gradient of gap juctional communication along the anterior ${\pm}$ posterior axis of the developing chick limb bud. Dev Biol 148, 529-535. https://doi.org/10.1016/0012-1606(91)90271-4
  2. Demoor FM, Redini F, Boittin M (1988) Expression of decorin and biglycan by rabbit articular chondrocytes: Effects of cytokines and phenotypic modulation. Biochem Biophys Acta 1398, 179-191.
  3. Gordana V. N. Freshney R. L (2006) Culture of cells for Tissue Engineering. a John wiley & Sons, Inc., publication pp 83-96.
  4. Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: Silk patch vs. pater patch. Wound Repair and Regeneration 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  5. Kim UJ, Park J, Kim HJ, Wada M, and Kaplan DL (2005) Three-demensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044
  6. Lee JY, Lee JS, Son YS (2006) Morphological and histological characteristics for various types of cartilages. Tissue Eng Regen Medi 3, 404-410.
  7. Long F, Linscnmayer TF (1995) Tissue-specific regulation of the type X collagen gene: Analyses by in vivo footprinting and transfection with a proximal promoter region. I Bid Chenz 270, 31310-31314.
  8. Lucas F, Shaw JTB, and Smith SG (1957) The amino acid sequence in a fraction of the fibroin of Bombyx mori. Biochem J 66, 468-479. https://doi.org/10.1042/bj0660468
  9. Lv Q, Cao C, Zhang Y, Man X, Zhu H (2004) The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres. J Mater Sci Mater Med 15, 1193-1197. https://doi.org/10.1007/s10856-004-5918-y
  10. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J. Bone Joint Surg Am 64, 460-466. https://doi.org/10.2106/00004623-198264030-00022
  11. Moy RL, Lee A, Zalka A (1991) Commonly used suture materials in skin surgery. Am Fam Physician 44, 2123-2128.
  12. Reddi AH (1995) Cartilage morphogenesis: Role of bone and cartilage niorphogenctic proteins, homeobox genes and extracellular matirix. Matrix RioE 14, 599-606. https://doi.org/10.1016/S0945-053X(05)80024-1
  13. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54, 139-148. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  14. Strirpe NS, Goetinck PF (1989) Gene regulation during cartilage differentiation: temporal and spatial expression of link protein and cartilage matrix protein in the developing limb. Development 107, 23-33.