DOI QR코드

DOI QR Code

Effects of the Rotary Embossing Process on Mechanical Properties in Aluminum Alloy 1050 Sheet

  • Guler, H. (Mechanical Engineering Department, Faculty of Engineering and Architecture, Uludag University) ;
  • Ozcan, R. (Mechanical Engineering Department, Faculty of Engineering and Architecture, Uludag University)
  • Published : 2012.04.20

Abstract

Heat shields are designed to protect components from heat damage, and one method of producing heat shields is with the embossing process. The embossing process is a sheet metal-forming method that is utilised in strengthening sheet metals. This method also increases the surface area useful for heat transfer. In this paper, the effect of this technique on the yield load, tensile load, bending strength and buckling strength for different sheet thicknesses of aluminium alloy 1050 sheets is investigated. Furthermore, the efficacy of this forming technique as a method for strengthening the sheets is discussed.

Keywords

References

  1. C. S. Namoco Jr., T. Iizuka, N. Hatanaka, N. Takakura, and K. Yamaguchi, Mater. Processing Technol. 192-193, 18 (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.013
  2. C. S. Namoco Jr., T. Iizuka, R. C. Sagrado, N. Takakura, and K. Yamaguchi, Mater. Processing Technol. 177, 368 (2006). https://doi.org/10.1016/j.jmatprotec.2006.03.208
  3. C. S. Namoco Jr., T. Iizuka, K. Narita, N. Takakura, and K. Yamaguchi, Mater. Processing Technol. 187-188, 202 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.182
  4. C. S. Namoco Jr., T. Iizuka, N. Hatanaka, and N. Takakura, Mater. Forum 31, 194 (2007).
  5. Y. H. Moon, S. S Kang, J. R. Cho, and T. G. Kim, Mater. Processing Technol. 132, 365 (2003). https://doi.org/10.1016/S0924-0136(02)00925-1
  6. M. Gavas, Metalurgija 45, 109 (2006).
  7. L. Lang, J. Danckert, and K. B. Nielsen, J. Eng. Manufacture 218, 833 (2004). https://doi.org/10.1243/0954405041486118
  8. Y. T. Keum, and B. Y. Han, Ceramic Processing Research 3, 159 (2002).
  9. L. Lang, J. Danckert, and K. B. Nielsen, Int. J. Machine Tools & Manufacture 44, 649 (2004). https://doi.org/10.1016/j.ijmachtools.2003.11.004
  10. L. Lang, J. Danckert, and K. B. Nielsen, Int. J. Machine Tools & Manufacture 44, 495 (2004). https://doi.org/10.1016/j.ijmachtools.2003.10.028
  11. Y. H. Moon, Y. K. Kang, J. W. Park, and S. R. Gong, Int. J. Machine Tools & Manufacture 41, 1283 (2001). https://doi.org/10.1016/S0890-6955(01)00008-6
  12. H. I. Demirci, M. Ya ar, K. Demiray, and M. Karall, Mater. and Design 29, 526 (2008). https://doi.org/10.1016/j.matdes.2007.01.008

Cited by

  1. Microstructure Evolution and Mechanical Properties of Al-1080 Processed by a Combination of Equal Channel Angular Pressing and High Pressure Torsion vol.44, pp.6, 2012, https://doi.org/10.1007/s11661-013-1629-7
  2. Investigation of the tool effect on the strength of friction stir spot welded aluminum specimens: A comparative study vol.57, pp.3, 2012, https://doi.org/10.3139/120.110695
  3. 엠보싱 알루미늄 판재의 기계적특성과 스프링백 평가 (제1보) vol.16, pp.2, 2012, https://doi.org/10.5762/kais.2015.16.2.921
  4. 3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보) vol.16, pp.3, 2012, https://doi.org/10.5762/kais.2015.16.3.1585
  5. Evaluation of the plastic yield locus for embossed sheet using biaxial tensile tests vol.22, pp.6, 2012, https://doi.org/10.1007/s12540-016-6173-8
  6. Evaluation of the plastic yield locus for embossed sheet using biaxial tensile tests vol.22, pp.6, 2012, https://doi.org/10.1007/s12540-016-6173-8
  7. Mechanical Behavior of Embossed AA1050-O Sheets Subjected to Tension and Forming vol.19, pp.10, 2012, https://doi.org/10.1007/s12541-018-0182-0
  8. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion: A review vol.34, pp.2, 2012, https://doi.org/10.1016/j.cja.2020.03.028